Die bodenartenspezifischen Kennwerte der KA5

Für die 5. Auflage der Bodenkundlichen Kartieranleitung, KA5, stellten die Staatlichen Geologischen Dienste in Deutschland über 15000 Datensätze zur Ableitung bodenartenspezifischer Kennwerte des Wasser- und Lufthaushaltes der Böden bereit.

Jeder Datensatz sollte Angaben zur Körnung, zum Skelett- und Humusgehalt, zur Roh-, Rein- und Lagerungsdichte, zur Porengrößenverteilung und zur Wasserleitfähigkeit enthalten. Die aus zwölf Quellen kommenden Datensätze wurden in einem einheitlichen Datenformat zusammengeführt, auf Dubletten und offensichtliche Fehlern kontrolliert und von diesen bereinigt, auf die bodenartenspezifische Belegung hin analysiert und vorrangig nach der Trockenrohdichte und dem Humusgehalt gruppiert.

Die Sicht auf den derart stratifizierten Datenbestand führte zur Entscheidung, dass die auf Feinbodenarten bezogenen Kennwerte ausschließlich aus arithmetischen Mittelwerten mit mindestens 20 Datensätzen entwickelt wurden. Die verbleibenden Lücken in den Wertetabellen wurden — weiterhin eng an vorliegende Datensätze angelehnt — durch das Expertenwissen bodenphysikalischer, bodenhydrologischer und geophysikalischer Fachkollegen geschlossen.

Der Vergleich der neu ermittelten Kennwerte mit den Kennwerten der 3. und 4. Auflage der Kartieranleitung, KA3 und KA4, zeigte, dass die schon in der 2. Auflage der Kartieranleitung getroffene und in den Kennwerten der KA3 implizit fortgesetzte Aufteilung der nutzbaren Feldkapazität in die pF-Bereiche 1,8 bis 2,5 und 2,5 bis 4,2 für die standortgemäße Zuweisung von Kennwerten für stau- und grundwassergeprägte bzw. wasserfreie Böden wesentlich ist, zumal wenn es sich um Sandböden handelt. Deshalb wurde die nutzbare Feldkapazität der Sande in der KA5 explizit für den pF-Bereich 1,8 bis 2,5, die nutzbare Feldkapazität aller anderen Bodenarten hingegen für den pF-Bereich 2,5 bis 4,2 berechnet. Die für beide pF-Bereiche über alle Bodenarten ausgeführte Tabelle findet sich im Anhang der DIN 4220.

Weitergehende Fragen zu den Kennwerten, ihren Datenquellen und den Details ihrer Ableitung beantwortet die folgende, bedarfsorientiert fortgeführte <u>Liste der häufig gestellten Fragen zu den Kennwerten der KA5</u>, die auch die für beide pF-Bereiche über alle Bodenarten ausgeführte Kennwerttabelle enthält.

FAQ_KA5 – die Liste der häufig gestellten Fragen zu den Kennwerten der KA5

- von engl: FAQ = Frequently Asked Questions <math>-

Ein Mausklick auf die Nummer einer Frage führt Sie zur Antwort; die Liste wurde zuletzt aktualisiert am 23. Januar 2008.

	was ist ein "Datensatz der KA5"?
<u>2</u>	Wer stellte wie viele Datensätze bereit?
3	Wie wurden die Daten für die Auswertung aufbereitet?
<u>4</u>	Wie verteilen sich die Bodenarten im Körnungsdiagramm?
<u>5</u>	Wie sind die Bodenarten insgesamt und wie sind sie durch die sechs größten Datenquellen abgedeckt?
<u>6</u>	Wie umfangreich sind die Bodenarten für die Kombinationen aus Trockenrohdichtenklassen und Humusgehaltsklassen belegt?
<u>7</u>	Wie sieht die – herkunftsspezifische - Standardabweichung einiger Kennwerte aus?
8	Wie wurde die Trockenrohdichte klassifiziert?
9	Wie wurde die effektive Lagerungsdichte klassifiziert?
<u>10</u>	Wie wurde das Gesamtporenvolumen klassifiziert?
<u>11</u>	Wie wurde die Luftkapazität klassifiziert?
<u>12</u>	Wie wurde die nutzbare Feldkapazität klassifiziert?
<u>13</u>	Wie wurde die Feldkapazität klassifiziert?
<u>14</u>	Wie wurde der Totwasseranteil klassifiziert?
<u>15</u>	Weshalb nimmt der Totwasseranteil mit zunehmender Trockenrohdichte ab?

- Was bedeutet die wieder aufgenommene Aufteilung der nutzbaren Feldkapazität in die pF-Bereiche 1,8 bis 2,5 und 2,5 bis 4,2?
- **17** Wie sieht die Kennwerttabelle mit der über alle Bodenarten aufgeteilten nutzbaren Feldkapazität aus?
- 18 Können die neuen Kennwerte der KA5 auf die Bodenarten nach WRB bezogen werden?
- 19 Wie wurde die gesättigte Wasserleitfähigkeit klassifiziert und berechnet?

1 Was ist ein "Datensatz der KA5"?

Der Geologische Dienst NRW wurde von der ad-hoc-AG Boden mit der Zusammenführung, Vereinheitlichung, Prüfung und Auswertung der bodenphysikalischen Datensätze der Staatlichen Geologischen Dienste Deutschlands beauftragt. Die Staatlichen Geologischen Dienste in Deutschland wurden im November 2002 um Bereitstellung bodenphysikalischer Daten gebeten.

Die Kollegen erhielten folgende Liste hinsichtlich der notwendigen Inhalte und Formatierungen:

Inhalte und Formatierung der Daten

für die statistische Ableitung bodenphysikalischer Parameter für die KA5

Spaltentreue ASCII-Datei mit folgendem Aufbau:

- o/f = obligates / fakultatives Feld
- Format = wie C
- Fehlwerte sind mit "-1" zu belegen.
- Summe der Feldinhalte 2 bis 9 = 100!
- Wurde nur Gesamtsand ermittelt, sind FFS, FS und MS mit"-1" zu belegen; GS ist dann Gesamtsand.
- Felder 11 und 12 sind alternativ, eines obligat, wenn Analyse vorliegt.
- LK + FK = GPV
- FK TOT = NFK
- NFK1 + NFK2 = NFK

Nr.	o/f	Feldname	Format	Position	Einheit	Inhalt
1	0	ID	%4d	1 – 4		eindeutige Satznummer
2	0	T	%4d	5 – 8	Gew%	Tonanteil
3	0	FU	%4d	10 – 13	Gew%	Feinschluffanteil
4	0	MU	%4d	15 - 18	Gew%	Mittelschluffanteil
5	0	GU	%4d	20 - 23	Gew%	Grobschluffanteil
6	f	FFS	%4d	25 - 28	Gew%	Feinstsandanteil
7	0	FS	%4d	30 - 33	Gew%	Feinsandanteil
8	0	MS	%4d	35 - 38	Gew%	Mittelsandanteil
9	0	GS	%4d	40 – 43	Gew%	Grobsandanteil (ggf. Gesamtsand)
10	0	SKE	%4d	45 - 48	Gew%	Skelettanteil
11	o/f	ORG	%4.1f	50 – 53	Gew%	Gehalt an organischem Kohlenstoff
12	o/f	HUM	%4.1f	55 – 58	Gew%	Humusgehalt
13	0	TRD	%4.2f	60 - 63	g / cm ³	Trockenrohdichte
14	f	RD	%4.2f	65 – 68	g / cm ³	Reindichte (spez. Gewicht)
15	0	GPV	%4.1f	70 - 73	Vol%	Gesamtporenvolumen
16	0	LK	%4.1f	75 - 78	Vol%	Luftkapazität (pF < 1.8)
17	f	NFK1	%4.1f	80 - 83	Vol%	nutzbare Feldkapazität =1= (pF 1.8 bis 2.5)
18	f	NFK2	%4.1f	85 – 88	Vol%	nutzbare Feldkapazität =2= (pF 2.5 bis 4.2)
19	0	NFK	%4.1f	90 - 93	Vol%	nutzbare Feldkapazität (pF 1.8 bis 4.2)
20	0	FK	%4.1f	95 – 98	Vol%	Feldkapazität (pF > 1.8)
21	0	TOT	%4.1f	100 – 103	Vol%	Totwasser (pF > 4.2)
22	0	KF	%8.1f	105 - 113	cm / Tag	kf-Wert

Die Datei bitte als Anhang einer E-Mail senden an: Für Rückfragen wenden Sie sich bitte an:

schrey@gd.nrw.de
Dr. H. P. Schrey:
02151/897-588

Der Anforderungsliste voraus ging eine Recherche über die bundesweit mehr oder weniger einheitlich verfügbaren Daten. Aus den Ergebnissen dieser Recherche ergab sich bedauerlicher Weise schon für die Anforderungsliste ein Verzicht auf:

- die konkrete, Verortung der Proben anhand von Koordinaten
- die Realnutzung der beprobten Böden
- die Tiefenangaben der Probenahmen
- die Horizontangaben zu den Proben
- die Ausgangssubstrate der Böden

In vielen, aber nicht allen Fällen enthielt das Feld ID entgegen der Anforderungen und der vorgegebenen Formatierung zusätzliche Horizontangaben.

Zukünftig müssen demnach die Datensätze, die zur Ableitung bodenphysikalischer Bodenkennwerte herangezogen werden, neben den in der Anforderungsliste genannten Angaben auch folgende Informationen enthalten:

- die Koordinaten der Probenahmestelle in Metergenauigkeit
- die Realnutzung der beprobten Böden mit der Unterscheidung Acker, Grünland und Wald, ggf. mit Vornutzung
- die Tiefenangaben (Ober- und Untergrenze, zumindest Referenztiefe) der Probenahme in Dezimetern
- die Horizontangaben zu den Proben nach einer länderübergreifend vereinfachten Liste möglicher Horizontsymbole
- die Ausgangssubstrate der Böden nach einer länderübergreifend vereinbarten Liste repräsentativer Genesen und Gesteine.

2 Wer stellte wie viele Datensätze bereit?

Die Tabelle zeigt, dass für die Kennwerte im Wesentlichen 6 große Datenbestände aus Bayern, Niedersachsen, Nordrhein-Westfalen, Rheinland-Pfalz sowie der forstbodenkundliche Datenbestand aus Göttingen und der Datenbestand aus der ehemaligen DDR bereitgestellt wurden. Die Spalte "Bemerkungen" lässt erkennen, dass die Datensätze nicht uneingeschränkt zur Ableitung von Kennwerten geeignet sind.

Tabelle 2.1: Herkunft und Anzahl der Datensätze für die Kennwerte der KA4 und der KA5

Kürzel	Datenherkunft	für KA4 gelieferte Datensätze	zusätzlich für KA5 gelieferte Datensätze	maximal nutzbare Datensätze	Bemerkungen
BW	Baden-Württemberg	0	907	484	zum Teil ohne nutzbare Feldkapazität
BY	Bayern	633	3141	3774	
BE	Berlin	202	0	202	
BB	Brandenburg	0	8	8	
НВ	Bremen	0	0	0	
НН	Hamburg	0	0	0	
HE	Hessen	142	0	142	
MV	Mecklenburg-Vorpommern	0	0	0	
NI	Niedersachsen	1694	399	2093	
NW	Nordrhein-Westfalen	1987	644	2631	
RP	Rheinland-Pfalz	168	2832	2933	zum Teil ohne Körnung
SH	Schleswig-Holstein	333	369	697	zum Teil ohne Körnung
SL	Saarland	0	0	0	
SN	Sachsen	0	0	0	
ST	Sachsen-Anhalt	0	193	191	
ТН	Thüringen	0	422	0	alle ohne Totwasser
Tee	forstbodenkundlicher Datenbestand von Herrn Teepe, Göttingen	0	1450	1450	
DDR	Datenbestand aus der ehemaligen DDR von Herrn Vetterlein, Berlin	1194	0	1194	
Σ	Gesamtanzahl	6353	10365	15799	

3 Wie wurden die Daten für die Auswertung aufbereitet?

Die aus zwölf Quellen stammenden Daten waren sehr unterschiedlich formatiert und wurden in diversen Datenformaten geliefert. Daher mussten sie zunächst in ein einheitliches Format gebracht und weitgehenden Konsistenz- und Plausibilitätstests unterzogen werden:

- Offensichtliche Ausreißer wurden, soweit es sich um eindeutige Zahlendreher oder falsche Feldzuweisungen handelte, meist nach telefonischer Rücksprache bereinigt.
- Duplikate, die u. a. durch doppelte Lieferung zur KA4 und zur KA5 auftraten, wurden entfernt.
- Kornsummen zwischen 85 und 115 % wurden nach Rücksprache mit den Fachleuten der Daten liefernden Stelle auf exakt 100 % gesetzt oder ausgeschlossen, wenn ein auf 100 Setzen nicht möglich war. Datensätze mit größeren Abweichungen wurden ausgeschlossen.
- Der Feinstsand wurde grundsätzlich als Anteil des Feinsandes definiert.
- Einzelne Gleichsetzungen von Grob- und Gesamtschluff oder Grob- und Gesamtsand wurden angepasst.

Teilweise machten die Datensätze mit Körnungsanalysen auch Angaben zur Bodenart nach KA4 bzw. KA5; diese Angaben waren jedoch vereinzelt auch nicht nachvollziehbar. Daher wurde für alle Datensätze die Zuordnung zur Bodenart nach KA5 durch einen Punkt-In-Polygon-Algorithmus auf Basis des rechtwinklig gesetzten Körnungsdiagramms zugeordnet. Wenn ein Datensatz durch seine Ton-Schluff-Koordinaten auf die Grenze zwischen zwei Bodenarten fiel, wurde er — mit Ausnahme von Sandgehalten unter 1 % — der Bodenart mit dem höherem Schluff- oder höherem Tongehalt zugeordnet.

Anschließend wurden aus den verbliebenen Datensätzen

- die Ausreißer hinsichtlich der einzelnen Kennwerte durch Ausschluss bis zum 1. und über dem 99. Perzentil des jeweiligen Kennwertes eliminiert,
- die statistischen Maßzahlen Median, arithmetisches Mittel, geometrisches Mittel und Standardabweichung aller Kennwerte berechnet,
- die Belegung kleinster Wertespannen der Kennwerte ermittelt,
- die Klassifikationen durchgeführt.

Die Klassifikationen der einzelnen Kennwerte wurden unter folgenden Anforderungen aufgestellt:

- Klassifikationen der KA3, KA4 oder einschlägige DIN- und DVWK-Regelwerke, soweit diese für den jeweiligen Kennwert vorlagen, sollen übernommen oder die neuen Klassifikationen an diese angelehnt werden.
- Die neuen Klassifikationen sollen nach Möglichkeit fünfstufig sein.
- Die Klassifikationen sollen mittenbetont belegt sein, so dass die mittlere von idealer Weise fünf Klassen die meisten Datensätze repräsentiert.
- Die Klassen sollen gleiche oder geometrisch gestaffelte Klassenbreiten (Wertespannen) haben, soweit keine fachlichen Gründe dagegen sprechen.

Die Klassifikationen wurden nach diesen Vorgaben nicht automatisiert nach einem starren Schema durchgeführt, sondern mit Blick auf eine ausgewogene Lösung aller Anforderungen aus einem Set vergleichend aufgestellter Klassifikationen ausgewählt.

In den für die jeweiligen Kennwerte spezifischen Abschnitten der Dokumentation werden in den Tabellen und Abbildungen grundsätzlich alle verfügbaren Werte wiedergegeben, also auch die Werte unterhalb des 1. und die Werte oberhalb des 99. Perzentils.

4 Wie verteilen sich die Bodenarten im Körnungsdiagramm?

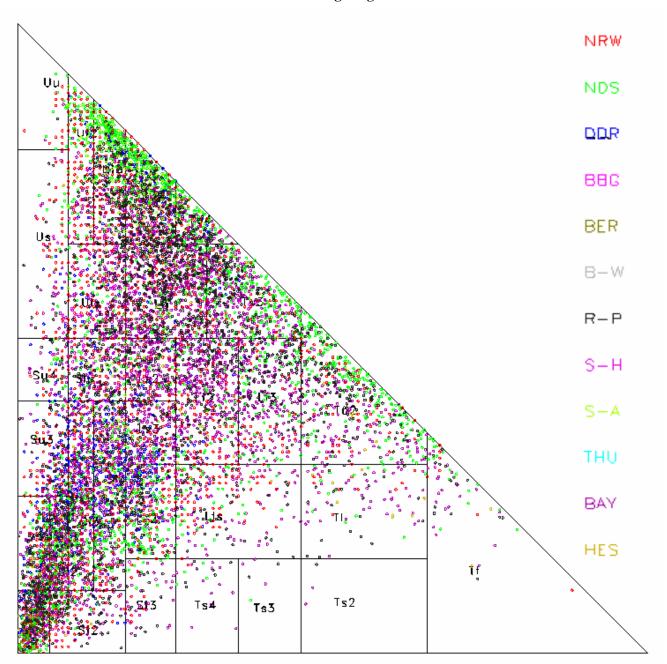


Abbildung 4.1: Verteilung der rund 15000 Datensätze im Körnungsdiagramm

Die Abbildung 4.1 zeigt die Lage aller Datensätze vor dem Hintergrund des Körnungsdiagramms. Dabei wird ersichtlich, dass sandige Tone und hochreiner Tone trotz des großen Datenumfangs sehr selten vertreten sind. Das praktische Fehlen der schwach bis stark sandigen Tone ist begründet durch die natürlicher Weise seltene Zweigipfeligkeit dieser Korngrößenverteilungen, während die tonarmen (unter 8 %) sandigen Schluffe und stark schluffigen Sande zwar schon häufiger angetroffen werden, sicherlich aber durch die labortechnisch schwierige Grenze zwischen Grobschluff und Feinstsand unsicherer bestimmt werden.

Zukünftig sollte diesen schwach belegten Bodenarten ein größeres Interesse in der Datensammlung und Analyse gelten.

Die Abbildung 1 lässt nur ansatzweise erkennen, dass die unterschiedlichen Datenquellen verschiedene bodenartliche, weil substratbezogene Schwerpunkte bzw. Punktwolken im Körnungsdiagramm belegen. Da die Da-

tenquellen jedoch das Ausgangssubstrat nicht benennen und eine länderübergreifend einheitliche Ansprache der Substrate absehbar nicht nachgelegt werden kann, ist diese Aussage über die Ursachen der quellespezifischen Punktwolken zwar begründet, im Detail aber nicht belegbar.

Zukünftig sollten die Datensätze, die zur Ableitung bodenphysikalischer Bodenkennwerte herangezogen werden, Informationen über die Ausgangssubstrate der Böden nach einer länderübergreifend vereinbarten Liste repräsentativer Genesen und Gesteine enthalten.

5 Wie sind die Bodenarten insgesamt und wie sind sie durch die sechs größten Datenquellen abgedeckt?

Die Tabellen beschreiben die Belegung der Bodenarten für die drei Trockenrohdichte-Klassen TRD1+2 (0,8 bis 1,4 g/cm³), TRD3 (1,4 bis 1,6 g/cm³) und TRD4+5 (1,6 bis 2,0 g/cm³) durch die sechs größten Datenquellen.

Zu beachten ist, dass hier eine weiter gehende Unterteilung der Datensatz-Gruppen je Bodenart nach den Humusgehaltsklassen sowie nach dem Skelettgehalt noch fehlt!

<u>Tabelle 5.1:</u> Belegung der Bodenarten für die KA5 insgesamt

	KA5	Gesamtbes	tand
Bodenart	TRD1+2	TRD3	TRD4+5
Ss	213	599	356
Sl2	154	253	157
Sl3	198	304	349
Sl4	171	239	461
Slu	144	134	117
St2	48	136	143
St3	6	16	55
Su2	145	250	140
Su3	75	116	110
Su4	33	47	34
Ls2	159	157	131
Ls3	130	136	213
Ls4	49	99	375
Lt2	272	317	218
Lt3	216	263	69
Lts	57	103	155
Lu	457	627	265
Uu	19	20	7
Uls	184	267	118
Us	89	59	20
Ut2	106	186	78
Ut3	295	553	226
Ut4	359	805	248
Tt	96	31	1
Tl	78	51	13
Tu2	436	323	47
Tu3	390	451	137
Tu4	123	252	40
Ts2	0	2	1
Ts3	1	2	4
Ts4	0	7	20

<u>Tabelle 5.2:</u> Belegung der Bodenarten durch die Daten aus Bayern, der ehemaligen DDR und aus Niedersachsen

		Bayern		DD	R - Vetterl	ein	N	iedersachse	en
Bodenart	TRD1+2	TRD3	TRD4+5	TRD1+2	TRD3	TRD4+5	TRD1+2	TRD3	TRD4+5
Ss	16	88	40	3	67	47	26	60	76
Sl2	23	66	33	1	17	42	18	39	22
Sl3	55	76	50	7	34	102	20	37	38
Sl4	69	73	54	0	14	146	6	26	81
Slu	49	34	18	0	5	16	8	11	13
St2	11	39	37	1	4	8	5	8	16
St3	1	8	27	0	0	1	1	1	6
Su2	17	56	19	4	17	35	10	25	28
Su3	18	23	8	2	14	40	4	10	8
Su4	13	12	2	1	1	7	0	6	6
Ls2	82	57	23	0	0	14	8	10	6
Ls3	58	47	21	1	5	70	2	15	9
Ls4	21	29	40	0	3	106	4	6	110
Lt2	142	127	59	1	2	19	12	17	18
Lt3	100	86	16	0	0	3	24	34	7
Lts	25	40	32	0	0	16	8	11	24
Lu	180	211	55	5	15	5	27	44	15
Uu	1	0	1	0	0	0	4	3	4
Uls	70	95	14	1	9	12	9	14	15
Us	24	11	2	0	5	1	3	7	3
Ut2	18	14	11	3	16	6	22	30	25
Ut3	53	50	9	15	46	10	25	102	50
Ut4	64	102	21	18	82	37	24	127	31
Tt	29	11	0	0	0	0	29	6	0
Tl	33	27	1	0	0	0	12	6	2
Tu2	90	97	10	0	0	0	155	58	12
Tu3	52	160	46	1	6	5	108	63	13
Tu4	14	51	8	2	17	1	22	46	6
Ts2	0	2	0	0	0	0	0	0	0
Ts3	0	2	1	0	0	0	1	0	0
Ts4	0	2	10	0	0	0	0	1	3

<u>Tabelle 5.3:</u> Belegung der Bodenarten durch die Daten aus Nordrhein-Westfalen, Rheinland-Pfalz und die forstbodenkundlichen Daten aus Göttingen

		No	rdrhein-W	estfalen	Rheir	ıland-Pfalz	For	rstbodenk Dater	
Bodenart	TRD1+2	TRD3	TRD4+5	TRD1+2	TRD3	TRD4+5	TRD1+2	TRD3	TRD4+5
Ss	11	113	110	74	105	7	62	70	31
Sl2	16	37	31	36	40	13	49	17	2
Sl3	18	46	80	27	47	42	50	30	18
Sl4	8	33	77	52	58	57	21	5	10
Slu	6	16	32	27	37	21	37	11	5
St2	7	41	26	18	16	42	3	13	2
St3	0	2	8	0	3	12	4	1	0
Su2	8	37	25	48	42	8	43	42	6
Su3	9	18	27	19	20	16	13	19	6
Su4	3	8	10	4	9	3	11	9	4
Ls2	3	14	26	30	35	22	20	22	26
Ls3	10	14	54	26	25	25	30	23	19
Ls4	9	19	65	7	33	30	8	8	7
Lt2	25	51	46	41	80	42	18	22	15
Lt3	15	24	11	37	89	17	26	11	5
Lts	8	26	44	5	23	26	9	2	8
Lu	27	58	59	118	182	84	58	59	15
Uu	4	8	1	0	0	1	9	6	0
Uls	19	53	41	33	49	16	27	17	5
Us	12	19	10	12	6	2	27	3	1
Ut2	37	76	17	5	9	9	9	25	9
Ut3	69	216	105	49	49	24	39	26	18
Ut4	40	214	93	98	124	36	36	51	18
Tt	7	0	1	18	5	0	5	3	0
Tl	17	2	0	5	13	8	0	0	0
Tu2	38	26	7	75	87	7	46	15	2
Tu3	18	32	7	68	103	23	65	23	20
Tu4	12	28	10	39	31	3	2	10	1
Ts2	0	0	0	0	0	1	0	0	0
Ts3	0	0	0	0	0	3	0	0	0
Ts4	0	0	1	0	3	4	0	1	1

Die zeigen – exemplarisch für die sechs größten Datenquellen – dass die natürlicher Weise in Böden seltenen Bodenarten Ts2, Ts3 und Ts4 in allen Datenquellen praktisch fehlen.

Für die Belegung in den Tabellen 5.1 bis 5.3 fällt insgesamt auf, dass die sandigen Tone sowie der tonige Sand erwartungsgemäß fast nicht belegt sind. Entgegen häufiger, allerdings fehlerhaft überzeichnender Ansprachen aus der Fingerprobe sind sowohl der reine Schluff als auch der reine und der lehmige Ton nur gering belegt; diese drei Bodenarten fehlen beispielsweise alle in der Datenquelle "DDR-Vetterlein", während in den Quellen "Bayern" und "Rheinland-Pfalz" nur der Uu fehlt, wohingegen Nordrhein-Westfalen und vor allem Niedersachsen jedoch auch diese Bodenarten belegen können.

Ähnliche quellenspezifische Schwerpunkte lassen sich für weitere Bodenarten zeigen.

Auffällig sind außerdem die mit Ausnahme des tonigen Schluffs durchgängigen Belegungsschwerpunkte in der Gruppe TRD4+5 für die Datenquelle "DDR-Vetterlein", während die übrigen 5 großen Datenquellen rechts ausgewogenen Belegungen mit Blick auf die TRD-Klassen zeigen. Betrachtet man einzelne Bodenarten, dann fällt beispielsweise auf, dass der schluffige Lehm in den Datenquellen Bayern, Rheinland-Pfalz, Niedersachsen und bei den forstbodenkundlichen Daten, nicht aber in Nordrhein-Westfalen in der TRD3 stärker als und TRD1+2 und dort immer noch stärker als in TRD4+5 vertreten sind. Andererseits dominiert der schwach tonige Lehm aus Bayern in der TRD1+2 vor TRD3 vor TRD4+5, während bei den anderen Datenquellen die Belegungsfolge eher TRD3 vor TRD4+5 vor TRD1+2 ist. Solche für die datenquellenspezifischen Unterschiede sind wohl nicht anders denn als substratgebundene Varianzen zu deuten. Da jedoch keine Angaben zu den Ausgangssubstraten der Böden vorliegen, lassen sich auch wesentliche Unterschiede in der Probenaufbereitung bzw. der labortechnischen Körnungsanalytik sicher ausschließen.

Für solche Bodenarten ist die Abhängigkeit der Kennwerttabellen von möglichen Sondersubstraten (ggf. aus speziellen Untersuchungsvorhaben) und von einzelnen Laborpraktiken besonders ausgeprägt und zukünftig durch eine gerichtete Probenahme unter einheitlicher Dokumentation u.a. der Ausgangssubstrate eine Absicherung der ermittelten Kennwerte anzustreben.

Wie umfangreich sind die Bodenarten für die Kombinationen aus Trockenrohdichteklassen und Humusgehaltsklassen belegt?

Die umseitige Tabelle zeigt die Belegung der Kombination von fünf (zusammengefasst: drei) Trockenrohdichteklassen und sechs Humusgehaltsklassen je Bodenart auf, wobei die Kürzel der Humusgehaltsklassen in der hier eingeschobenen Tabelle erläutert werden:

Tabelle 6.1: Einstufung der Humusgehalte

Wertespanne	Bewertung	Kürzel
0	humusfrei	h0
> 0 bis < 1	sehr schwach humos	h1
1 bis < 2	schwach humos	h2
2 bis < 4	mittel humos	h3
4 bis < 7,5	stark humos	h4
7,5 bis < 15	sehr stark humos	h5
15 bis < 30	extrem humos, anmoorig	h6
≥ 30	Torf	h7

In der umseitigen Tabelle sind die Humusklassen h0 und h1 zusammengefasst entsprechend der teilweise etablierten Laborpraxis, Proben, die maximal sehr schwach humos sind, keiner Humuszerstörung zu unterwerfen; häufig ist dies hinsichtlich des Humusgehaltes in den Datensätzen mit "ohne Angabe" verbunden. Im Datenbestand gibt es rund 5000 Datensätze mit dieser Annahme.

Betrachtet man den eigentlich sehr umfangreichen Datenbestand in einer derart geschichteten Form, dann wird deutlich, dass es doch nur wenige Merkmalskombinationen gibt, die ein über mehrere Bodenarten kontinuierliches Wertefeld im Körnungsdiagramm aufspannen. Dies ist nicht verwunderlich, weil sechs Klassen der Humusgehalte und fünf (drei) Klassen der Trockenrohdichte 30 (18) Kombinationen ergeben und das Körnungsdiagramm 5 000 ganzzahlig verschiedene Gemenge von Sand, Schluff und Ton repräsentiert. Daraus ergibt sich theoretisch eine Vielfalt von 30 (18) mal 5 000, also 150 000 (90 000) Datensätzen.

Selbst bei einer auf 3 %-Stufen ausgedünnten Belegung auf 550 Sand-Schluff-Ton-Gemenge wären 550 mal 30, also 16 500 bzw. 550 mal 18, also 9 900 Datensätze erforderlich, um bei optimaler Verteilung über das Körnungsdiagramm kontinuierliche Wertefelder zu bieten.

Da eine hinreichend gleichförmige Verteilungen der Bodenarten auf die Kombinationen aus Trockenrohdichteklasse und Humusgehaltsstufe gemäß dieser Rahmenbedingungen nicht gegeben ist, wurden die Kennwerte für die KA5 nicht als Regressionen über die Sand-, Ton- und Humusanteile sowie über die Trockenrohdichte, sondern als arithmetische Mittelwerte für jede Bodenart und für die teils zusammengefassten Klassen der Trockenrohdichte berechnet.

Dabei galten Gruppen von mindestens 20 Datensätzen je Kombination als hinreichend bzw. eigenständig tragfähig für die Aufstellung der Kennwertetabellen, siehe Tabelle 6.2.

<u>Tabelle 6.2:</u> Belegung der Bodenarten für die Kombinationen aus fünf (zusammengefasst: drei) Trockenraumdichte-Klassen und sechs Humusgehaltsklassen, bezogen auf den gesamten Datenbestand

orange hinterlegt sind alle Werte unter 9;

gelb hinterlegt sind die Werte von 9 bis unter 20

nicht hinterlegt sind alle Werte über 20.

			ockeni 3 bis <:						ockeni 4 bis <						ockeni 5 bis <			
Boden- art	h0 h1	h2	h3	h4	h5	h6	h0 h1	h2	h3	h4	h5	h6	h0 h1	h2	h3	h4	h5	h6
Ss	50	30	31	18	15	4	167	42	28	18	3	0	111	4	7	2	0	0
Sl2	26	27	39	28	6	1	75	42	34	4	1	0	48	24	9	0	0	0
Sl3	22	44	43	33	10	1	77	69	51	3	0	0	92	53	14	0	0	0
Sl4	28	28	42	38	12	0	77	44	30	2	0	0	135	44	17	0	0	0
Slu	15	30	30	34	5	0	27	32	21	3	0	0	30	14	10	0	0	0
St2	4	10	11	7	2	2	27	11	17	2	0	0	47	1	1	0	0	0
St3	0	1	0	0	1	0	8	2	0	0	0	0	13	0	0	0	0	0
Su2	45	23	30	17	4	0	89	39	28	5	0	0	50	10	4	0	0	0
Su3	20	20	10	2	1	0	36	20	16	2	1	0	24	22	2	0	0	0
Su4	7	10	5	5	0	0	21	9	3	0	0	0	12	2	1	0	0	0
Ls2	23	25	38	32	13	1	31	29	34	1	0	0	49	10	5	0	0	0
Ls3	20	27	30	23	5	0	33	32	16	6	0	0	52	12	7	0	0	0
Ls4	4	2	14	11	3	0	17	14	17	3	0	0	118	15	8	0	0	0
Lt2	17	32	60	79	25	1	58	66	52	7	1	0	54	13	7	3	0	0
Lt3	9	21	58	41	28	0	39	50	60	13	1	0	29	5	0	0	0	0
Lts	3	8	8	7	9	0	28	16	9	3	0	0	50	8	3	0	0	0
Lu	38	79	114	83	21	5	152	111	107	5	0	0	90	18	14	1	0	0
Uu	3	1	0	0	0	0	10	1	0	0	0	0	5	0	0	0	0	0
Uls	16	35	41	41	9	1	73	51	40	1	1	0	32	10	4	0	0	0
Us	13	6	26	16	5	0	19	5	5	2	0	0	7	1	0	0	0	0
Ut2	10	20	17	7	2	0	43	17	8	0	0	0	25	8	1	0	0	0
Ut3	44	51	44	18	4	1	116	74	30	0	0	0	66	6	0	0	0	0
Ut4	46	88	73	24	14	1	219	93	82	1	0	0	65	6	5	0	0	0
Tt	24	21	19	6	3	0	18	6	0	0	0	1	0	0	0	0	0	0
Tl	15	15	10	4	2	0	18	11	3	0	1	0	7	0	1	0	0	0
Tu2	29	89	119	58	19	0	114	40	26	4	0	0	22	2	0	0	0	0
Tu3	34	93	85	58	34	2	128	83	59	4	0	0	42	8	1	0	0	0
Tu4	12	45	28	10	4	0	88	45	31	0	0	0	15	2	1	0	0	0
Ts2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ts3	1	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	0
Ts4	0	0	0	0	0	0	4	1	0	0	0	0	9	1	0	0	0	0

Die in der Tabelle farblichen Hinterlegungen spiegeln die Erfahrung wider, dass <u>neun Stechzylinder</u> üblicher Weise ausreichen, um bei Beprobungen eines Bodenprofils angesichts der kleinräumigen Variabilität der Bodeneigenschaften und der verbleibenden Unsicherheiten der Laboranalyse <u>zuverlässige Aussagen über horizontbezogene Kennwerte eines Profils</u> zu machen.

Im Zuge der Aufbereitung des Gesamtdatenbestandes für die KA5 stellte es sich heraus, dass etwa <u>20 Datensätze</u> erforderlich sind, um angesichts der verschiedenen Datenquellen und der unbekannten Ausgangssubstrate der Bodenbildung sowie der Unsicherheit hinsichtlich der Skelett- und Humusangaben <u>vertrauenswürdige Kennwerte</u> ableiten zu können.

Die geringe Anzahl nicht farblich hinterlegter Tabellenfelder gibt einen ersten Eindruck vom Umfang der zur Vervollständigung der Kennwertlisten erforderlichen Interpolationen. Erschwerend kommt hinzu, dass die doppelte Humusklasse "h0+h1" grundsätzlich auch Datensätze humoser Proben ohne Humuszerstörung umfassen kann. Dadurch können "Verunreinigungen" der zur Kennwertermittlung zusammengestellten Datensätze auftreten und mit diesen wiederum stark erhöhte Standardabweichungen.

Angesichts dieser Unvollständigkeiten ist die Extrapolation der vom Humusgehalt abhängigen Korrekturfaktoren mit zusätzlichen Unsicherheiten behaftet.

7 Wie sieht die – herkunftsspezifische - Standardabweichung einiger Kennwerte aus?

Es empfiehlt sich, diese Datei ggf. auf DIN A3 quer (landscape) auszudrucken!

Um sich den Inhalt der Tabellen zu erschließen, sind sie beispielhaft unter folgenden Fragestellungen zu durchleuchten:

- Bis zu welcher Datensatzanzahl steigt bei welchen Bodenarten oder Bodenartengruppen die Standardabweichung deutlich an?
- o Wie groß ist das Gesamtporenvolumen als Summe aus den Mittelwerten von Luftkapazität und Feldkapazität?
- o Wie verhält sich das aus den Mittelwerten berechnete Gesamtporenvolumen zu dem aus dem Ursprungsdaten berechnete Gesamtporenvolumen?
- o Wie verhält sich das aus den Mittelwerten berechnete Gesamtporenvolumen unter Annahme einer Reindichte von 2,65 g/cm³ zu den Trockenrohdichteklassen?
- o Wie verhalten sich quellenspezifisch die jeweiligen Kennwerte beim Wechsel von "h0+h1" zu "h2"?
- o Wie verhalten sich quellenspezifisch die jeweiligen Kennwerte beim Wechsel von "TRD_1" über "TRD_3" zu "TRD_5"?
- o Wie groß ist der Totwasseranteil als Differenz aus den Mittelwerten von Feldkapazität und nutzbarer Feldkapazität?
- o Wie verhält sich der aus den Mittelwerten berechnete Totwasseranteil zu dem aus dem Ursprungsdaten berechneten Totwasseranteil?

Exemplarisch wurden in den Tabellen alle Felderblöcke gelb markiert, für die Kombinationen aus Bodenart, Trockenrohdichte und Humusstufe, mit einer Anzahl über 20 und einer Standardabweichung kleiner gleich 3,5 vorliegen. Die Markierungen zeigen, dass diese Bedingungen auch für die schon insgesamt häufiger belegten Bodenarten nur selten erfüllt sind. Darüber hinaus liegen diese Bedingungen bevorzugt bei den hohen Trockenraumdichten und den schluffreichen Bodenarten vor. Mit anderen Worten: für die Sande bis zu den lehmigen oder schluffigen Sanden sowie für die sandigen Lehme gibt es durchweg deutlich höhere Standardabweichungen.

Nachdem durch Klärung solcher Fragen plausible Kennwerte und über die Humusstufen oder Trockenrohdichteklassen oder hinsichtlich der Lage im Körnungsdiagramm betrachtet auch Kennwertefelder identifiziert wurden, ist es möglich, aus diesen ersten Stützpunkten einer Wertetabelle durch schrittweise Inter- und Extrapolation unter Hinzuziehen weitere Datensätze, auch wenn sie nicht statistisch zusammengefasst werden konnten, die Lücken im Körnungsdiagramm und in der Wertetafel zu schließen.

Die Tabellen stehen unter folgenden Einschränkungen:

- o Die Humusstufen h0 und h1 können nicht durchgängig von "h_unbelegt" getrennt werden.
- o Weitere Humusstufen sind nicht ausgewiesen, weil sie nur für sehr wenige Bodenarten hinreichend belegt sind.
- o Es werden aufgrund unzureichenden Umfangs nicht alle Bodenarten betrachtet.
- o Die Statistiken zum Gesamtporenvolumen und Totwasseranteil fehlen aus Platzgründen.

Bodenarten mit meist hinreichenden Datensätzen werden für den Gesamtdatenbestand "KA5" und für die sechs größten Datenquellen nach den Trockenrohdichteklassen T1_ (> 0,8 bis <= 1,4 g/cm³), T3_ (> 1,4 bis <= 1,6 g/cm³) und T5_ (> 1,6 bis <= 2,0 g/cm³) (in der Tabelle als "T1_" usw.) sowie nach den Humusgehaltsklassen h0+h1(in der Tabelle "h1" genannt) und h2 für die Luftkapazität, nutzbare Feldkapazität und Feldkapazität - aufgelistet mit ihrer Anzahl "anz, ihrem arithmetischen Mittelwert "ari" und der Standardabweichung "abw". Das erste (linke) Feld der obersten Tabellenzeile, nennt den Bezug der Tabelle: KA5 für den Gesamtdatenbestand

_	1 1	Das	erste (IIII		der obers	stell Labe	enenzene	, nemit u		_			ii Gesaiii	luatembe	Stanu										
KA5				Luftka		T				tzbare Fe							pazität					Totwass			
Bda		T1_h1	T3_h1			T3_h2	T5_h2	T1_h1	T3_h1		T1_h2		T5_h2	T1_h1	T3_h1	T5_h1		T3_h2	T5_h2	T1_h1	T3_h1	T5_h1	T1_h2	T3_h2	T5_h2
Ss	anz	50	163	110	30	42	4	50	163	110	30	42	4	50	163	110	30	42	4	50	162	110	30	42	4
Ss	ari	33,7	26,2	21,1	30,3	24,1	5,8	13,2	13,2	11,8	15,3	13,5	19,3	17,1	16,5	15,6	18,9	18,3	29,5	3,9	3,2	3,5	3,6	5,0	10,2
Ss	abw	9,5	8,2	7,3	6,5	8,3	5,6	7,5	7,6	6,1	6,7	6,6	11,9	9,6	8,2	6,7	7,0	7,4	5,8	4,5	2,5	3,2	2,0	3,2	8,6
Sl2 Sl2	anz	26	74	46	27	40	24	26	74	46	27	40	24	26	74	46	27	40 23,2	24 23,9	26	74	46	26	40	24
S12 S12	ari abw	27,6 5,0	19,8 6,5	14,2 4,7	25,0 6,6	18,8 6,5	11,5 4,2	15,6 4,0	16,7 6,0	15,2 4,1	20,1 6,4	16,5 4,8	18,1 3,0	23,3	23,6 8,1	21,6 5,0	26,3 6,6	6,3	3,8	7,5 3,5	6,0 3,4	5,6 1,7	6,4 2,6	6,4 2,2	5,8 2,5
Sl3		22	76	88	44	69	53	22	76	88	43	69	52	22	76	88	44	69	53	22	72	87	41	67	52
SI3	anz ari	24,6	16,8	11,9	22,7	14,7	9,1	19,0	16,7	14,6	18,4	17,5	17,5	28,7	25,6	24,1	28,8	27,5	25,6	9,7	8,3	9,2	10,9	10,6	8,1
SI3	abw	9,2	6,4	6,4	8,7	6,2	3,8	6,5	4,4	4,4	5,2	5,8	3,3	7,4	6,6	5,5	6,2	5,9	3,3	3,6	3,5	3,8	5,3	5,3	1,9
Su2	anz	45	87	50	23	39	10	45	87	50	23	39	10	45	87	50	23	39	10	44	84	50	23	39	10
Su2	ari	25,2	21,5	16,7	26,6	20,7	14,6	18,0	16,4	15,6	18,8	17,3	16,0	25,9	21,2	19,7	24,3	22,6	23,5	8,0	4,6	4,0	5,6	4,9	7,5
Su2	abw	7,9	6,7	5,4	7,9	7,2	5,1	6,0	5,8	4,0	5,3	5,7	6,7	9,0	6,7	4,8	6,5	6,7	5,2	7,7	3,1	2,4	2,7	4,5	3,8
Su3	anz	20	36	24	20	20	22	20	36	24	20	20	22	20	36	24	20	20	22	20	33	24	20	20	22
Su3	ari	17,6	13,4	11,8	22,4	17,2	10,6	25,9	22,4	17,1	21,7	19,5	19,6	36,4	31,1	24,0	30,0	27,0	26,6	8,7	6,7	6,4	7,6	6,6	6,5
Su3	abw	8,3	5,8	4,2	7,5	4,0	4,6	7,3	6,0	3,5	4,7	3,9	3,1	10,6	9,8	5,1	5,5	5,0	4,8	4,1	2,8	3,3	3,7	2,4	2,5
Su4	anz	7	21	12	10	9	2	7	21	12	10	9	2	7	21	12	10	9	2	7	21	12	10	9	2
Su4	ari	18,6	13,2	8,7	19,3	10,6	9,9	21,2	21,3	20,0	19,9	21,1	18,0	32,0	30,1	29,6	32,5	31,7	26,0	10,8	8,8	7,6	12,6	10,6	8,0
Su4	abw	6,1	5,7	4,9	8,0	2,6	5,3	10,7	6,9	6,0	9,7	4,2	4,0	5,9	5,1	6,7	6,4	3,4	2,6	6,3	3,7	4,2	3,5	4,6	1,3
Ls2	anz	23	31	49	25	27	10	23	31	49	25	27	10	23	31	49	25	27	10	22	29	47	25	26	10
Ls2	ari	15,8	10,8	5,3	14,7	10,2	6,7	21,4	15,1	14,4	19,3	16,1	13,2	39,0	31,6	30,6	37,5	33,4	31,0	17,7	16,9	16,3	18,0	17,1	17,9
Ls2	abw	11,2	5,4	3,4	6,8	3,7	3,4	6,3	4,3	3,2	5,6	3,8	4,8	8,3	5,2	3,7	6,9	4,5	2,3	7,5	3,5	3,8	4,4	5,1	4,8
Ls3	anz	20	33	52	26	32	12	20	32	52	26	32	12	20	33	52	26	32	12	20	32	50	26	29	12
Ls3	ari	17,3	8,8	5,7	15,1	9,9	7,4	22,8	16,5	11,5	23,1	16,4	13,7	37,7	33,6	28,0	38,7	32,5	30,0	14,9	17,1	17,8	15,6	15,7	16,3
Ls3	abw	5,0	4,2	3,3	7,5	6,0	3,0	8,2	5,0	3,9	10,2	5,5	3,1	7,3	4,8	4,3	10,0	4,7	2,5	3,7	4,8	4,6	5,3	5,5	2,9
Ls4	anz	4	17	118	2	14	15	4	17	118	2	14	15	4	17	118	2	14	15	4	16	117	2	14	15
Ls4	ari	12,0	12,4	6,0	12,8	15,0	7,5	14,2	16,4	11,3	16,4	15,1	12,4	37,8	30,1	27,0	37,8	28,4	26,7	23,7	13,1	16,0	21,4	13,3	14,9
Ls4	abw	11,9	6,0	3,9	9,1	4,5	3,4	7,8	5,3	3,8	4,1	4,4	2,0	12,7	6,0	4,2	7,3	3,8	2,9	14,1	2,8	3,8	3,2	3,4	3,0
Lt2	anz	17	58	54	32	66	13	17	58	54	32	66	13	17	58	54	32	66	13	17	58	54	32	66	13
Lt2	ari	9,8	8,0	4,6	11,9	8,1	4,6	20,5	14,5	10,4	14,2	12,5	12,0	45,4	34,7	32,1	37,4	34,6	32,9	24,8	20,1	22,1	23,6	22,0	20,9
Lt2	abw	8,3	4,5	3,8	5,4	3,5	2,8	9,0	4,6	4,0	3,4	3,4	5,5	11,5	4,1	3,7	5,4	5,0	2,3	8,1	5,0	4,5	6,8	5,1	5,8
Lt3	anz	8	39	26	20	50	5	9	39	27	20	50	5	9	39	27	20	50	5	7	32	23	19	50	5
Lt3	ari abw	4,2 4,7	3,9 2,8	3,2 2,1	7,5 5,6	5,9 3,3	2,3 1,3	13,3 3,9	11,3 3,0	8,1 3,2	14,6 3,5	11,8 2,6	8,7 1,8	45,6 6,3	38,7 3,5	34,5 4,3	41,9 5,1	38,3	35,6 1,4	31,0 6,0	27,2 3,8	26,6 4,5	27,8 6,4	26,6 3,8	26,9 2,1
Lts		3	28	50	8	16	8	3,9	28	50	8	16	8	3	28	50	8	16	8	3	27	4,3	8	16	8
Lts	anz	3,1	4,5	4,7	9,1	7,4	6,7	14,3	12,2	10,0	17,2	13,2	12,5	51,4	37,8	30,8	41,6	35,9	29,6	37,1	25,8	21,1	24,4	22,7	17,1
Lts	abw	1,9	3,4	2,9	6,6	3,9	3,0	7,3	5,7	4,2	5,5	2,5	5,4	5,8	3,6	4,7	7,8	3,5	3,2	2,7	5,9	4,4	6,2	3,2	6,4
Lu	anz	38	150	90	79	111	17	37	148	90	78	109	17	38	150	90	79	111	17	37	144	84	76	105	15
Lu	ari	10,4	6,8	4,0	12,9	8,7	4,6	19,3	17,1	14,1	18,9	16,4	14,2	41,4	35,9	33,3	37,3	34,7	33,1	21,9	19,0	18,7	18,7	18,3	18,1
Lu	abw	6,0	3,4	2,7	5,8	3,5	2,7	5,7	4,0	4,9	4,8	3,6	4,2	7,0	4,1	3,3	5,1	3,9	2,9	8,1	4,2	4,5	6,3	4,0	5,0
Uls	anz	16	70	32	35	51	8	16	70	32	35	51	8	16	70	32	35	51	8	16	67	31	34	50	8
Uls	ari	11,1	8,2	4,1	15,6	9,1	6,3	26,2	21,6	17,7	22,3	20,4	18,8	39,9	35,3	33,1	36,4	34,2	30,1	12,9	13,3	15,4	13,3	13,9	11,3
Uls	abw	5,3	4,8	2,4	7,0	3,8	3,3	5,8	6,1	6,3	7,4	4,7	2,5	5,7	5,6	2,6	8,0	3,7	2,4	4,7	4,8	6,9	4,0	3,7	3,6
Ut3	anz	43	115	65	51	73	6	43	114	65	51	73	6	43	115	65	51	73	6	42	101	64	45	71	6
Ut3	ari	11,4	6,6	3,2	11,5	7,4	2,7	25,5	22,9	19,6	24,2	24,0	25,8	38,7	35,8	34,3	37,4	36,3	34,4	13,3	13,1	14,7	13,3	12,2	8,6
Ut3	abw	3,7	3,4	1,7	5,0	2,8	1,9	5,8	4,7	3,3	4,2	3,0	3,0	4,8	2,6	1,4	4,4	2,6	2,3	5,6	4,4	3,1	5,3	2,7	2,1
Ut4	anz	46	219	64	87	91	6	45	219	65	86	88	6	46	219	65	87	91	6	44	197	62	79	77	6
Ut4	ari	13,5	6,4	3,0	12,3	7,6	2,2	22,9	19,5	15,9	19,7	19,6	18,5	37,4	35,9	34,5	36,9	35,9	35,7	14,5	16,6	18,5	17,6	16,6	17,2
Ut4	abw	4,8	2,9	2,0	5,6	3,7	1,9	4,8	3,7	3,2	4,3	4,0	2,4	5,0	2,7	2,4	4,6	3,3	2,0	4,1	3,4	2,9	6,8	3,3	2,2
Tu2	anz	27	113	22	89	40	2	27	113	22	89	40	2	27	113	22	89	40	2	27	99	17	86	37	2
Tu2	ari	3,4	2,1	1,9	3,5	3,1	1,9	13,9	11,5	10,6	14,0	12,0	9,6	47,5	41,9	35,7	48,1	42,2	38,7	33,6	30,0	24,6	34,5	29,9	29,1
Tu2	abw	3,1	1,9	1,6	3,2	2,1	0,8	5,4	5,5	5,2	3,8	5,6	1,1	4,0	2,6	3,2	5,6	2,5	0,3	6,2	6,6	7,2	5,4	6,0	0,8
Tu3		34	127	42	93	83	8	34	124	42	91	82	8	34	127	42	93	83	8	34	102	37	90	77	8
Tu3		7,1	5,0	3,0	8,4	6,2	4,4	17,5	13,1	10,1	15,9	13,1	10,8	44,1	38,4	34,5	42,9	37,3	33,6	26,6	24,9	24,2	28,2	24,2	22,9
Tu3	abw	5,0	3,3	3,0	5,9	3,0	4,2	7,0	4,9	3,7	4,8	3,6	4,2	6,3	3,1	4,4	7,2	5,7	2,8	7,0	5,5	5,6	5,6	6,1	4,1

Bodenarten mit meist hinreichenden Datensätzen werden für den Gesamtdatenbestand "KA5" und für die sechs größten Datenquellen nach den Trockenrohdichteklassen T1_ (> 0,8 bis <= 1,4 g/cm³), T3_ (> 1,4 bis <= 1,6 g/cm³) und T5_ (> 1,6 bis <= 2,0 g/cm³) (in der Tabelle als "T1_" usw.) sowie nach den Humusgehaltsklassen h0+h1(in der Tabelle "h1" genannt) und h2 für die Luftkapazität, nutzbare Feldkapazität und Feldkapazität - aufgelistet mit ihrer Anzahl "anz, ihrem arithmetischen Mittelwert "ari" und der Standardabweichung "abw". Das erste (linke) Feld der obersten Tabellenzeile, nennt den Bezug der Tabelle: BAY für Bayern

		Das e	erste (lin	ke) Feld		sten Tabe	llenzeile	, nennt d					ıyern						-	1					
BAY				Luftka		1				tzbare Fe						Feldka		1			1	Totwass		1	
Bda		T1_h1	T3_h1	T5_h1	T1_h2	T3_h2	T5_h2	T1_h1	T3_h1	T5_h1	T1_h2	T3_h2	T5_h2	T1_h1	T3_h1	T5_h1	T1_h2	T3_h2	T5_h2	T1_h1	T3_h1	T5_h1	T1_h2	T3_h2	T5_h2
Ss	anz	4	16	6		6		4	16	6		6		4	16	6		6		4	16	6	1	6	1
Ss	ari	24,5	20,0	21,7		30,1		18,1	18,6	8,2		9,3		22,6	22,2	14,4		14,4		4,5	3,6	6,2	0,0	5,0	0,0
Ss	abw	10,5	11,1	10,8		7,7		12,0	11,6	3,4		5,5		11,0	12,3	9,5		8,1		1,5	2,1	8,4	0,0	3,0	0,0
Sl2	anz	4	16	10	4	12	6	4	16	10	4	12	6	4	16	10	4	12	6	4	16	10	4	12	6
SI2	ari	23,4	18,6	14,6	17,9	16,6	11,8	15,6	17,9	14,8	21,7	18,3	16,2	25,5	23,9	21,6	31,1	26,0	24,5	9,9	6,0	6,8	9,4	7,8	8,3
Sl2	abw	5,6	7,4	4,8	9,7	7,7	5,7	3,8	8,1	6,1	12,6	6,1	2,9	4,4	7,7	5,7	10,8	7,7	4,8	5,2	2,1	1,0	3,1	2,3	3,2
Sl3	anz	5	15 15,0	15	18 19,2	15	8 7,5	5 17,2	15 18,4	15 14,8	18 18,6	15 17,0	8	5 32,5	15	15	18	15	8 28,2	5 15,3	15 8,9	15	18	15	8
Sl3 Sl3	ari abw	16,4 9,0	4,9	10,6 6,2	6,2	14,5 7,5	4,4	7,6	4,2	4,3	5,6	4,8	18,1 4,5	9,5	27,3 4,8	26,9 6,2	32,1 6,8	27,3 5,9	4,3	2,3	2,3	12,1 5,0	13,5 3,5	10,3 2,8	10,1
Su2		4	13	6	0,2	3	3	4	13	6	3,0	3	3	7,5	13	6	0,0	3,9	3	4	13	6	1	3	3
Su2	anz ari	23,8	21,1	18,3		16,5	13,7	16,9	16,1	13,2		18,5	16,9	24,7	22,5	18,6		25,8	24,6	7,7	6,4	5,4	0,0	7,3	7,8
Su2	abw	14,5	8,7	8,0		11,5	8,6	8,3	7,8	4,4		8,4	8,3	15,2	7,3	7,5		11,0	8,9	7,7	4,2	4,0	0,0	2,7	1,2
Su3	anz	5	4	3	4	5	2	5	4	3	4	5	2	5	4	3	4	5	2	5	4	3	4	5	2
Su3	ari	10,1	16,6	11,2	22,5	17,0	5,6	31,8	16,7	16,7	18,0	20,4	21,6	41,4	25,4	24,3	27,7	27,2	31,5	9,7	8,7	7,6	9,7	6,8	9,8
Su3	abw	7,5	8,4	0,6	6,6	3,7	1,0	7,6	9,5	1,4	3,5	3,6	1,2	9,1	10,2	2,1	3,7	2,7	1,7	6,0	1,6	1,2	3,8	1,5	0,5
Su4	anz	2	3	-,0	2	3	-,0	2	3	-, -	2	3	-,-	2	3	-,-	2	3	-,,	2	3	0	2	3	0
Su4	ari	15,0	11,0		8,2	8,5		24,4	23,8		36,7	23,6		36,6	31,6		43,1	33,7		12,2	7,9	0,0	6,5	10,1	0,0
Su4	abw	0,1	0,5		9,0	3,0		14,6	5,8		11,9	4,9		2,7	2,8		8,3	3,3		11,9	3,1	0,0	3,6	1,6	0,0
Ls2	anz	3	7	9	12	11	5	3	7	9	12	11	5	3	7	9	12	11	5	3	7	9	12	11	5
Ls2	ari	13,3	5,7	4,7	15,4	10,1	4,9	20,7	17,0	14,2	17,8	13,5	14,3	37,3	37,4	31,4	35,7	33,2	32,5	16,6	20,4	17,1	17,9	19,7	18,2
Ls2	abw	7,6	2,2	3,8	5,9	4,6	2,9	0,9	1,9	3,4	5,0	3,6	2,8	2,5	2,8	2,5	5,1	4,6	1,7	3,2	2,5	4,5	3,4	5,9	4,2
Ls3	anz	8	11	3	11	6		8	11	3	11	6		8	11	3	11	6		8	11	3	11	6	1
Ls3	ari	15,5	7,1	5,4	17,2	9,8		19,2	15,0	14,1	16,3	14,3		36,5	34,8	32,3	34,1	33,2		17,3	19,8	18,3	17,8	18,9	0,0
Ls3	abw	5,9	3,7	1,5	9,1	2,9		2,9	3,4	4,8	2,7	4,4		5,6	3,4	1,7	6,2	3,9		4,7	2,6	4,9	6,5	3,9	0,0
Ls4	anz		2	10	2		3		2	10	2		3		2	10	2		3	0	2	10	2	1	3
Ls4	ari		3,4	4,6	12,8		10,0		28,4	15,8	16,4		11,9		42,8	33,0	37,8		27,4	0,0	14,4	17,2	21,4	0,0	15,5
Ls4	abw		1,6	3,9	9,1		4,1		0,4	4,9	4,1		2,2		0,4	4,0	7,3		0,6	0,0	0,1	3,1	3,2	0,0	1,9
Lt2	anz	3	13	15	19	28	2	3	13	15	19	28	2	3	13	15	19	28	2	3	13	15	19	28	2
Lt2	ari	13,8	5,5	3,8	11,1	7,9	6,9	10,8	12,7	9,6	13,7	11,2	10,4	37,2	36,6	33,2	39,0	34,6	32,0	26,4	24,0	23,7	25,4	23,4	21,6
Lt2	abw	12,4	2,7	2,4	5,2	3,9	4,6	3,7	5,0	3,9	3,8	3,1	3,1	7,7	3,2	2,6	5,3	6,9	4,6	10,9	5,7	3,3	6,8	6,1	7,7
Lt3	anz	4	11	2	7	15		4	11	2	7	15		4	11	2	7	15		4	11	2	7	15	0
Lt3	ari	6,6	3,5	2,6	5,7	5,1		10,7	11,0	6,1	12,5	12,2		41,1	38,8	37,0	43,9	39,9		30,4	27,8	30,9	31,5	27,7	0,0
Lt3	abw	5,5	2,4	0,2	3,9	3,1		2,5	3,1	0,5	2,3	2,4		5,6	3,5	1,2	3,7	3,8		6,6	3,8	0,7	4,1	3,5	0,0
	anz		15 2,9	10	5	5			15	10	5 14,7	5 11,2			20.0	10	5	5 33,9		0,0	15	10	5	5 22,7	0,0
Lts	ari abw		2,9	5,6 4,5	11,0 6,6	9,0 4,6			13,2 6,5	11,6 5,2	0,7	3,1			39,0 3,1	31,3 3,8	39,1 7,4	4,1		0,0	25,8 6,6	19,6 6,9	24,4 7,7	2,5	0,0
Lts Lu	anz	10	49	18	23	33	2	10	49	18	23	33	2	10	49	18	23	33	2	10	49	18	23	33	2
Lu	ari	11,6	7,1	4,0	11,4	7,9	7,8	18,6	16,3	13,9	18,8	16,0	16,6	40,5	35,9	33,0	39,1	35,3	29,8	21,9	19,6	19,1	20,4	19,3	13,1
Lu	abw	5,3	2,6	3,2	6,1	3,2	4,6	6,5	3,8	4,9	6,1	3,6	3,3	6,2	2,9	4,3	4,8	3,0	6,6	6,4	4,2	5,7	6,9	3,6	9,9
Uls	anz	5	23	5	8	24	2	5	23	5	8	24	2	5	23	5	8	24	2	5	23	5	8	24	2
Uls	ari	13,1	6,9	3,5	14,2	8,0	4,7	22,5	21,5	17,0	22,6	20,3	17,4	36,3	35,9	34,5	36,8	35,0	33,0	13,9	14,4	17,5	14,2	14,7	15,5
Uls	abw	5,8	4,8	2,8	7,1	3,4	3,3	5,1	6,8	8,0	2,6	4,9	5,3	6,4	5,6	2,2	3,6	3,8	2,1	1,9	5,2	7,6	4,7	2,4	3,3
Ut3	anz	5	5	2	17	11	,-	5	5	2	17	11	,-	5	5	2	17	11	,	5	5	2	17	11	0
Ut3	ari	9,7	5,8	2,8	11,4	7,9		24,3	23,1	14,6	23,3	22,2		40,0	37,3	35,2	37,1	37,2		15,7	14,2	20,6	13,8	15,0	0,0
Ut3	abw	4,1	3,6	1,5	3,5	3,2		3,2	4,2	7,2	4,0	3,2		3,5	3,8	2,8	3,3	3,0		4,8	4,5	4,5	3,5	3,0	0,0
Ut4	anz	5	25	3	16	13	3	5	25	3	16	13	3	5	25	3	16	13	3	5	25	3	16	13	3
Ut4	ari	10,7	6,0	3,2	11,5	8,1	2,1	20,5	20,0	15,4	19,9	19,1	18,5	38,8	36,8	33,5	38,3	35,0	35,7	18,3	16,7	18,1	18,4	15,9	17,2
Ut4	abw	4,3	3,0	2,4	4,1	2,5	1,8	5,2	4,5	1,8	3,6	2,5	1,4	3,8	3,6	0,9	3,9	1,7	1,5	4,0	3,4	2,2	3,5	2,1	2,6
Tu2	anz	7	21		13	9		7	21		13	9		7	21		13	9		7	21	1	13	9	0
Tu2	ari	5,1	2,7		4,4	2,7		13,6	16,5		14,9	15,0		45,5	40,9		46,0	41,7		32,0	24,4	0,0	31,1	26,6	0,0
Tu2	abw	5,3	2,9		5,9	2,0		5,3	9,7		3,0	9,8		4,4	3,0		6,6	2,7		7,2	11,5	0,0	7,9	10,5	0,0
Tu3	anz	5	37	4	5	21		5	37	4	5	21		5	37	4	5	21		5	37	4	5	21	0
Tu3	ari	11,0	5,0	5,2	10,4	6,9		14,1	13,9	8,6	18,6	12,0		37,5	38,8	30,6	42,0	34,4		23,3	24,9	22,1	23,4	22,3	0,0
Tu3	abw	6,4	2,9	8,3	6,4	3,8		11,8	5,8	2,1	9,3	4,8		4,9	3,4	12,2	8,3	9,8		11,6	6,4	10,5	10,5	9,7	0,0

Bodenarten mit meist hinreichenden Datensätzen werden für den Gesamtdatenbestand "KA5" und für die sechs größten Datenquellen nach den Trockenrohdichteklassen T1_ (> 0,8 bis <= 1,4 g/cm³), T3_ (> 1,4 bis <= 1,6 g/cm³) und T5_ (> 1,6 bis <= 2,0 g/cm³) (in der Tabelle als "T1_" usw.) sowie nach den Humusgehaltsklassen h0+h1(in der Tabelle "h1" genannt) und h2 für die Luftkapazität, nutzbare Feldkapazität und Feldkapazität - aufgelistet mit ihrer Anzahl "anz, ihrem arithmetischen Mittelwert "ari" und der Standardabweichung "abw". Das erste (linke) Feld der obersten Tabellenzeile, nennt den Bezug der Tabelle: **DDR** für DDR - Vetterlein

		Das e	erste (IIII	ke) Feld (ten Tabe	nenzene	, nennt a					DR - vei	teriem											
DDR			ı	Luftka						tzbare Fe						Feldka		1			1		seranteil		
Bda		T1_h1	T3_h1		T1_h2		T5_h2	T1_h1		T5_h1			T5_h2	T1_h1	T3_h1	T5_h1			T5_h2	T1_h1	T3_h1	T5_h1		T3_h2	T5_h2
Ss	anz		7	8	2	2			7	8	2	2			7	8	2	2			7	8	2	2	
Ss	ari		22,5	25,0	16,3	32,5			18,6	9,8	28,6	8,1			20,1	12,1	31,4	10,7			1,5	2,3	2,8	2,6	
Ss	abw		8,4	3,8	8,6	0,5			8,3	3,8	10,1	2,5			8,5	3,7	8,6	2,7			0,3	0,8	1,5	0,1	
Sl2	anz		3	7		5	13		3	7		5	13		3	7		5	13	0	3	7		5	13
Sl2	ari		14,9	16,1		14,1	11,4		20,6	16,0		20,7	19,4		25,7	20,3		27,0	23,8	0,0	5,0	4,2		6,3	4,4
Sl2	abw	2	2,8	5,4		5,8	3,8	2	4,7	4,1		3,2	2,9	2	3,8	5,0		5,9	3,7	0,0	1,2	1,0		2,8	1,1
Sl3	anz	23,5	6 17,8	12		14 12,1	28 9,0	2 19,9	6	12 15,5		14 23,3	28 18,4	26,2	6 24,8	12 22,3		14	28	6,3	5,7	12		14	28
Sl3 Sl3	ari abw	10,1	6,4	12,7 5,2		5,4	3,2	8,5	19,1 5,8	4,5		4,0	3,1	9,0	6,6	5,0		29,8 4,2	25,6 3,1	0,5	1,4	6,8 1,9		6,5 1,3	7,1
Su2		10,1	5	15	3	2	2	0,5	5	15	3	2	2	9,0	5	15	3	2	2	0,5	5	1,9	3	2	2
Su2	anz ari		23,4	17,8	24,9	22,9	12,9		14,9	16,7	17,0	16,7	20,2		17,6	19,7	21,5	20,4	24,2		2,7	2,9	4,5	3,7	4,0
Su2	abw		6,7	5,9	4,9	12,0	6,8		6,3	4,8	3,5	7,8	6,0		6,7	6,1	4,6	11,0	7,1		1,0	2,9	1,3	3,7	1,1
Su3	anz		2	7	7,7	5	12		2	7	3,3	5	12		2	7	7,0	5	12		2	7	0	5	12
Su3	ari		21,1	13,3		15,6	10,5		18,1	18,8		20,7	20,4		22,1	23,9		26,2	25,8		4,0	5,1	0,0	5,5	5,5
Su3	abw		0,4	4,5		4,5	3,2		2,3	4,0		2,8	2,4		0,6	4,9		3,5	2,7		1,8	1,5	0,0	1,4	1,2
Su4	anz		О, г	1,0		1,5	5,2		2,5	1,0		2,0	ے, ۲		5,5	1,2		5,5	2,,		1,0	1,5	0,0	1, 1	
Su4	ari																								
Su4	abw																								
Ls2	anz			5			2			5			2			5			2			5			2
Ls2	ari			7,8			5,3			12,4			17,4			28,3			30,5			15,9			13,1
Ls2	abw			3,3			1,9			4,4			1,7			3,1			2,3			2,0			4,0
Ls3	anz		2	8		2	2		2	8		2	2		2	8		2	2		2	8		2	2
Ls3	ari		11,3	7,9		6,5	9,0		17,5	12,8		19,0	13,9		30,1	27,6		32,5	27,1		12,6	14,7		13,5	13,2
Ls3	abw		0,6	2,8		0,1	2,3		0,6	4,3		4,9	0,8		0,8	2,1		0,5	1,1		0,2	2,7		4,5	0,3
Ls4	anz			5			6			5			6			5			6			5			6
Ls4	ari			6,2			7,1			12,1			11,9			27,3			25,0			15,3			13,1
Ls4	abw			4,0			3,1			3,4			2,6			2,0			1,8			3,4			1,3
Lt2	anz																								
Lt2	ari																								
Lt2	abw																								
Lt3	anz																								
Lt3	ari																								
Lt3	abw																								
Lts	anz																								
Lts	ari																								
Lts	abw																								
Lu	anz		3	2	2				3	2	2				3	2	2				3	2	2		
Lu	ari		9,4	3,9	13,4				18,2	15,6	25,4				33,0	28,6	36,0				14,8	13,0	10,6		
Lu	abw		5,3	2,4	4,2	4			6,1	0,8	6,7	4			3,9	5,0	3,3	4			4,0	5,8	3,5	4	
Uls	anz					4						4						4						4	
Uls	ari					10,1						22,6				-		32,7						10,1	
Uls	abw	4			2	2,2		1	-		2	1,0		4	-		2	2,7		4	-		2	2,5	
Ut3	anz	11.7	6		2	21		26.0	6 25.1		26.5	21		4 25.6	6 35.0		20.5	21		4	6		12.0	21	
Ut3 Ut3	ari abw	11,7 0,9	8,9 1,5		9,8 0,4	7,4 2,8		26,9 0,6	25,1 3,1		26,5 0,7	24,5 2,9		35,6 0,9	35,0 2,8		39,5 3,0	35,9 2,5		8,8 0,9	9,9 1,4		13,0 2,3	11,5 1,3	
		0,9	9	 				0,0	3,1 9					0,9	2,8 9					0,9	9			·	
Ut4 Ut4	anz ari		8,0		8 13,1	6 8,6			20,1		21,9	6 19,3			34,4		8 35,7	6 34,3			14,3		13,8	6 15,0	
Ut4	abw		2,4		1,8	1,9			2,5		1,3	6,1			1,8		1,0	3,9			1,3		1,4	3,2	
Tu2	anz		۷,4		1,0	1,7			۷,3		1,3	0,1			1,0		1,0	3,7			1,3		1,4	3,4	
Tu2	ari																	 							
Tu2	abw																	1							
Tu3	anz																								
Tu3	ari																	 							
Tu3	abw																								
1 uJ	an W	l	l	Ì						1						1	l	ĺ	1	Ī	i	İ	İ		

Bodenarten mit meist hinreichenden Datensätzen werden für den Gesamtdatenbestand "KA5" und für die sechs größten Datenquellen nach den Trockenrohdichteklassen T1_ (> 0,8 bis <= 1,4 g/cm³), T3_ (> 1,4 bis <= 1,6 g/cm³) und T5_ (> 1,6 bis <= 2,0 g/cm³) (in der Tabelle als "T1_" usw.) sowie nach den Humusgehaltsklassen h0+h1(in der Tabelle "h1" genannt) und h2 für die Luftkapazität, nutzbare Feldkapazität und Feldkapazität - aufgelistet mit ihrer Anzahl "anz, ihrem arithmetischen Mittelwert "ari" und der Standardabweichung "abw". Das erste (linke) Feld der obersten Tabellenzeile, nennt den Bezug der Tabelle: NRW für Nordrhein-Westfalen

NRW			tporenv			ıftkapazi			re Feldka			ldkapazi		Tot	wasseran	toil
Bda		T1_h1	T3_h1	T5_h1	T1 h1	T3 h1	T5_h1	T1_h1	T3_h1	T5_h1	T1 h1	T3 h1	T5_h1	T1 h1	T3_h1	T5_h1
Ss	ona			110	11_111	113_111	110	11_11		110	11_11	113_111	110	11_11	113	110
Ss	anz	11	113						113							
	ari	49,4	42,4	37,1	27,5	25,4	18,7	18,0	14,4	16,0	21,8	17,0	18,4	3,9	2,6	2,4
Ss	abw	4,7	2,4	1,9	6,6	7,2	6,0	6,8	6,1	5,3	7,6	6,8	5,5	3,0	1,9	1,6
Sl2	anz	16	37	31	16	37	31	16	37	31	16	37	31	16	37	31
S12	ari	48,5	42,8	35,7	17,1	14,7	11,1	25,6	23,0	19,0	31,6	28,1	24,5	6,0	5,1	5,5
Sl2	abw	2,3	2,1	2,5	3,5	6,2	4,7	3,5	5,2	4,7	3,1	5,8	4,7	1,3	2,1	1,8
Sl3	anz	18	46	80	18	46	80	18	46	80	18	46	80	18	46	80
Sl3	ari	50,4	42,1	36,6	10,3	12,8	9,2	30,8	21,3	18,6	40,1	29,2	27,3	9,3	8,0	8,8
Sl3	abw	3,7	2,1	2,3	5,0	5,1	4,3	6,3	4,5	3,9	4,9	5,2	3,9	3,2	2,3	3,2
Su2	anz	8	37	25	8	37	25	8	37	25	8	37	25	8	37	25
Su2	ari	51,8	42,8	36,8	21,9	17,1	13,3	23,9	21,0	19,1	30,0	25,8	23,5	6,1	4,7	4,3
Su2	abw	5,3	2,2	2,0	8,6	6,2	4,2	4,9	5,2	2,8	5,2	6,4	3,7	2,4	2,4	3,2
Su3	anz	9	18	27	9	18	27	9	18	27	9	18	27	9	18	27
Su3	ari	50,7	42,0	35,7	13,5	11,3	6,6	30,8	24,7	22,9	37,2	30,7	29,2	6,4	6,0	6,3
Su3	abw	2,2	1,7	1,7	7,0	2,8	2,7	5,6	2,7	3,5	6,9	2,2	2,7	2,5	2,2	3,0
Su4	anz	3	8	10	3	8	10	3	8	10	3	8	10	3	8	10
Su4	ari	52,6	42,4	36,1	10,2	8,9	6,2	30,3	26,7	21,9	42,3	33,4	30,0	12,0	8,2	8,1
Su4	abw	4,9	1,4	2,3	5,6	4,7	2,5	7,8	4,0	3,2	7,7	5,0	2,4	3,2	2,8	2,9
Ls2		3	14	26	3,0	14	26	3	14	26	3	14	26	3,2	14	26
Ls2	anz ari	51,5	42,2	37,4	12,8	8,9	6,9	20,5	18,2	15,5	38,7	33,4	30,5	18,2	15,2	15,0
Ls2	arı	2,2	1,5	1,8	6,0	4,0	2,1	5,5	5,9	2,3	7,7	4,2	2,3	5,1	4,0	2,0
Ls3	anz	10	14	54	10	14	54	10	14	54	10	14	54	10	14	54
Ls3	ari	50,9	42,1	37,1	5,1	8,1	5,3	27,5	16,3	15,8	45,8	34,0	31,8	18,3	17,7	16,1
Ls3	abw	5,1	2,3	2,0	4,4	4,9	2,3	8,3	4,0	3,3	5,5	4,6	2,3	6,8	6,6	3,0
Ls4	anz	9	19	65	9	19	65	9	19	65	9	19	65	9	19	65
Ls4	ari	49,2	41,6	36,8	8,1	7,9	5,4	23,6	19,7	16,4	41,1	33,7	31,4	17,5	13,9	15,0
Ls4	abw	2,3	1,8	2,3	5,8	3,9	2,4	4,7	3,6	3,3	6,0	4,9	2,8	5,0	3,3	2,7
Lt2	anz	25	51	46	25	51	46	25	51	46	25	51	46	25	51	46
Lt2	ari	51,1	43,1	37,4	5,2	6,0	4,2	18,6	15,0	13,2	45,8	37,2	33,2	27,2	22,2	20,1
Lt2	abw	3,8	2,4	2,5	2,6	3,6	1,8	6,7	4,8	3,3	3,9	3,4	2,5	7,5	4,6	3,1
Lt3	anz	15	24	11	15	24	11	15	24	11	15	24	11	15	24	11
Lt3	ari	52,2	44,9	37,9	4,2	3,9	4,2	18,0	13,1	10,3	48,0	41,0	33,7	30,0	27,9	23,4
Lt3	abw	4,8	2,4	2,5	2,6	2,8	3,6	7,8	4,2	3,1	4,4	3,5	3,6	5,5	4,4	5,8
Lts	anz	8	26	44	8	26	44	8	26	44	8	26	44	8	26	44
Lts	ari	52,3	43,5	36,8	5,1	3,7	3,8	16,4	17,4	13,0	47,2	39,8	32,9	30,8	22,4	19,9
Lts	abw	3,7	2,4	2,4	3,7	1,9	2,0	4,3	4,0	4,9	2,0	2,5	3,0	4,8	4,2	5,2
Lu	anz	27	58	59	27	58	59	27	58	59	27	58	59	27	58	59
Lu	ari	54,1	43,2	38,5	10,6	7,3	4,8	26,6	20,0	17,1	43,5	35,9	33,7	16,9	15,9	16,6
Lu	abw	5,7	2,4	1,7	5,1	3,2	1,7	9,6	3,6	3,7	7,8	2,8	1,9	4,2	3,4	3,5
Uls	anz	19	53	41	19	53	41	19	53	41	19	53	41	19	53	41
Uls	ari	51,5	42,6	37,5	12,5	7,7	4,5	26,7	24,6	22,3	39,0	34,9	33,0	12,3	10,3	10,8
Uls	abw	4,5	1,8	1,6	5,8	2,5	2,0	5,6	3,4	3,9	5,6	2,7	2,3	4,3	2,8	3,1
Ut3		69	216	105	69	216	105	69	216	105	69	216	105	69	216	105
Ut3	anz ari	53,2	43,1	38,4	12,5	6,1	3,0	29,7	26,6	24,5	40,7	37,0	35,4	11,0	10,5	10,9
Ut3	abw	5,1	2,3	1,4	5,6	2,8	1,4	5,0	3,0	2,3	5,1	2,3	1,5	4,1	2,2	1,8
											-					
Ut4	anz	40 52.2	214	93	40	214	93	40	214	93	40	214	93	40	214	93
Ut4	ari	52,3	43,0	39,1	11,6	5,8	3,7	26,0	23,2	21,3	40,7	37,3	35,4	14,7	14,0	14,1
Ut4	abw	4,7	2,2	1,4	6,9	2,5	2,0	5,8	3,4	3,2	6,4	2,5	2,1	4,8	3,0	2,4
Tu2	anz	38	26	7	38	26	7	38	26	7	38	26	7	38	26	7
Tu2	ari	52,2	45,6	39,9	3,4	3,0	4,6	18,1	13,8	8,0	48,8	42,6	35,2	30,7	28,9	27,2
Tu2	abw	4,0	2,4	3,2	2,1	2,2	2,7	6,4	4,3	3,1	4,1	2,6	1,2	4,7	4,7	3,6
Tu3	anz	18	32	7	18	32	7	18	32	7	18	32	7	18	32	7
Tu3	ari	52,8	44,7	39,5	5,2	5,4	3,9	23,3	13,7	11,9	47,5	39,3	35,6	24,3	25,6	23,7
Tu3	abw	4,8	2,0	1,9	2,7	2,2	2,4	7,1	3,7	3,2	5,9	2,8	2,3	3,6	4,5	3,3
		,	,	,	,	,	. /					,			/	· · · · · ·

Bodenarten mit meist hinreichenden Datensätzen werden für den Gesamtdatenbestand "KA5" und für die sechs größten Datenquellen nach den Trockenrohdichteklassen T1_ (> 0,8 bis <= 1,4 g/cm³), T3_ (> 1,4 bis <= 1,6 g/cm³) und T5_ (> 1,6 bis <= 2,0 g/cm³) (in der Tabelle als "T1_" usw.) sowie nach den Humusgehaltsklassen h0+h1(in der Tabelle "h1" genannt) und h2 für die Luftkapazität, nutzbare Feldkapazität und Feldkapazität - aufgelistet mit ihrer Anzahl "anz, ihrem arithmetischen Mittelwert "ari" und der Standardabweichung "abw". Das erste (linke) Feld der obersten Tabellenzeile, nennt den Bezug der Tabelle: NDS für Niedersachsen

	Das erste (linke) Feld der obersten Tabellenzeile, nennt den Bezug der Tabelle: NDS für Nied							edersach																	
NDS			ı	Luftka		· · · · · · · · · · · · · · · · · · ·					eldkapazi					Feldka			ı		-		seranteil	· · · · · · · · · · · · · · · · · · ·	
Bda		T1_h1	T3_h1		T1_h2	T3_h2	T5_h2	T1_h1	T3_h1	T5_h1	T1_h2	T3_h2	T5_h2	T1_h1	T3_h1	T5_h1	T1_h2	T3_h2	T5_h2	T1_h1	T3_h1	T5_h1	T1_h2	T3_h2	T5_h2
Ss	anz	3	32	64		11	2	3	32	64		11	2	3	32	64		11	2	3	32	64		11	2
Ss	ari	16,7	22,3	19,9		16,7	7,7	15,9	14,3	13,1		17,6	21,9	32,3	18,0	16,0		24,1	28,7	16,4	3,7	2,8		6,5	6,8
Ss	abw	15,6	7,8	7,4		6,7	8,7	8,8	7,9	6,1		5,8	4,9	17,5	8,5	6,4		6,9	7,5	13,4	2,6	1,9		2,6	2,5
Sl2	anz	20.4	14	14		9	5	2	14	14		9	5	2	14	14		9	5	2	14	14		9	5
Sl2	ari	30,4	18,1	13,9		19,7	11,3	11,9	17,7	15,8		15,7	17,2	17,0	22,3	21,2		21,8	23,5	5,2	4,5	5,4		6,0	6,3
Sl2	abw	0,4	5,9	4,0		2,7	4,0	0,1	6,6	3,1		2,6	2,4	0,0	6,0	3,3		2,9	3,3	0,1	2,1	1,2		1,0	2,0
SI3	anz		16	29 10,7		9 14,4	11,6		16 15,7	29		9 17,4	2		16 25,5	29		9	2		16	29 9,5		9 11,0	2
S13 S13	ari abw		15,6 7,0	5,6		4,9	3,2		3,8	14,3 5,3		5,3	13,8 1,0		7,1	23,7 4,6		28,4 5,3	23,1		9,8 4,8	3,8		3,5	9,3
Su2			11	16		6	3,2		11	16		6	1,0		11	16		6	0,0		11	16		6	1,1
Su2	anz ari		18,9	14,7		18,8			14,5	15,1		17,8			18,4	19,3		23,1			3,8	4,2		5,4	
Su2	abw		6,9	4,7		5,3			4,2	3,2		4,5			4,8	3,6		4,7			1,5	1,9		1,3	
Su3	anz		6	4	3	2	2		6	4	3	2	2		6	4	3	2	2		6	4	3	2	2
Su3	ari		11,5	10,7	13,4	14,8	3,0		21,6	18,2	26,4	21,2	19,6		27,5	23,6	33,7	27,4	30,1		5,9	5,5	7,3	6,1	10,5
Su3	abw		7,0	3,1	10,8	5,7	1,3		5,7	3,3	7,9	7,0	8,0		5,3	2,7	10,5	4,3	2,3		2,3	1,8	2,7	2,7	5,8
Su4	anz		5	5	10,0	5,1	1,5		5	5	,,,,	7,0	5,0		5	5	10,5	1,5	2,3		5	5	2,7	۷, ،	5,0
Su4	ari		9,3	5,1					26,0	24,5					32,3	29,9					6,3	5,4			
Su4	abw		6,2	4,4					5,3	5,3					6,3	3,9					2,4	1,8			
Ls2	anz	2	4	6	2	2		2	4	6	2	2		2	4	6	2	2		2	4	6	2	2	
Ls2	ari	4,2	11,1	4,8	6,2	9,0		24,0	14,7	13,7	22,7	19,5		52,0	31,5	31,8	46,5	34,9		28,0	16,8	18,1	23,9	15,4	
Ls2	abw	3,7	3,9	4,1	0,9	4,1		8,5	7,6	3,1	0,4	1,8		0,4	5,8	3,4	0,5	0,5		8,1	3,5	5,8	0,1	1,3	
Ls3	anz		7	6		4		ŕ	7	6		4		ŕ	7	6		4		Í	7	6	,	4	
Ls3	ari		6,9	6,9		4,5			16,0	9,8		13,4			34,2	25,4		37,0			18,2	15,5		23,6	
Ls3	abw		3,8	3,5		2,2			8,0	1,9		4,0			5,4	1,3		1,6			5,6	2,2		3,8	
Ls4	anz	2		75		2	3	2		75		2	3	2		75		2	3	2		75		2	3
Ls4	ari	1,8		5,6		10,7	5,6	16,4		9,9		17,8	12,8	48,5		26,2		34,0	31,4	32,1		16,3		16,2	18,6
Ls4	abw	1,2		3,2		1,4	2,4	12,5		2,8		7,7	1,4	4,5		3,2		0,9	1,7	17,0		3,6		6,8	0,3
Lt2	anz	3	6	14	2	5		3	6	14	2	5		3	6	14	2	5		3	6	14	2	5	
Lt2	ari	4,2	5,0	2,7	4,0	7,3		15,4	14,2	9,9	12,7	13,1		49,6	36,6	32,7	43,5	36,1		34,1	22,4	22,7	30,9	23,0	
Lt2	abw	3,1	2,1	1,8	1,3	1,7		5,4	7,4	3,1	5,5	3,3		2,9	3,8	2,7	0,6	2,0		5,5	8,0	4,3	6,2	4,1	
Lt3	anz		5	7	8	10		2	5	7	8	10		2	5	7	8	10		2	5	7	8	10	
Lt3	ari		2,2	3,9	5,7	4,5		14,4	10,1	8,1	15,8	10,3		50,0	40,3	34,3	44,4	37,8		35,5	30,2	26,1	28,6	27,6	
Lt3	abw		2,2	1,5	3,5	2,4		2,5	1,1	2,6	4,1	2,0		2,4	3,5	2,2	2,7	2,0		0,1	2,5	3,9	5,6	3,1	
Lts	anz		6	21		2			6	21		2			6	21		2			6	21		2	
Lts	ari		5,9	5,3		5,0			7,4	8,6		13,2			36,7	29,6		37,0			29,3	20,9		23,8	1
Lts	abw	_	3,4	2,1		1,1	_	_	2,3	2,9		4,0		_	4,3	3,2		0,4		_	3,8	2,6		4,4	
Lu	anz	7	32	10	8	8	2	7	32	10	8	8	2	7	32	10	8	8	21.6	7	32	10	8	8	2
Lu	ari	5,9	5,5	3,0	7,5	6,5	6,3	18,2	16,3	15,7	17,4	14,0	14,6	45,2	36,0	33,4	40,3	36,4	31,6	27,0	19,7	17,7	23,0	22,5	17,0
Lu	abw	1,4	2,5	2,1	2,1	3,1	1,1	6,1	3,6	6,4	4,5	4,5	1,0	4,5	3,8	3,4	4,5	4,0	0,0	7,9	3,5	4,6	4,6	6,0	1,0
Uls Uls	anz ari	5.2	7,2	11	7.3	7,4		28,6	25.8	20.0	27,7	3		43,8	35.5	31.1	38.0	36,2		15,2	8 9,7	11	10.3	3 16,0	
Uls	arı abw	5,2 2,3	3,3	4,6 2,7	7,3 3,3	1,0		28,6 5,6	25,8 5,7	20,0	0,6	7,3		2,8	35,5 5,1	31,1 1,5	38,0 1,7	36,2		7,0	3,8	11,2 4,5	10,3 2,3	4,3	
Ut3	anz	2,3 7	66	46	3,3 11	25		7	66	46	11	25		2,8 7	66	46	1,7	25		7,0	5,8 66	4,3	2,3	25	
Ut3	anz	12,4	6,7	3,0	9,7	6,8		22,8	22,3	19,8	24,8	24,9		37,1	35,3	34,3	38,5	36,1		14,4	13,0	14,5	13,7	11,2	
Ut3	abw	5,7	2,9	1,7	3,9	2,6		4,4	4,3	2,9	5,2	2,4		5,2	2,1	1,4	5,5	2,0		8,1	4,2	2,6	9,7	2,6	
Ut4	anz	3	93	30	11	16		3	93	30	11	16		3	93	30	11	16		3	93	30	11	16	
Ut4	ari	5,9	6,7	3,2	10,9	8,5		19,8	18,5	15,6	19,6	17,5		43,0	35,1	34,3	36,0	34,6		23,1	16,6	18,7	16,4	17,1	
Ut4	abw	2,3	2,3	1,9	2,7	2,7		0,4	2,9	3,0	3,8	3,3		4,1	1,6	2,1	3,0	1,1		3,9	3,0	3,6	4,4	3,3	
Tu2	anz	12	42	10	60	7		12	42	10	60	7		12	42	10	60	7		12	42	10	60	7	
Tu2	ari	2,7	1,6	2,0	3,3	2,8		13,6	10,3	9,4	14,0	9,1		48,1	42,2	34,4	49,6	41,0		34,5	31,9	25,0	35,5	31,9	
Tu2	abw	1,4	1,2	1,3	2,2	0,8		6,1	1,9	5,2	3,4	2,7		2,8	2,1	2,4	4,7	2,1		4,9	2,2	6,3	4,1	2,2	
Tu3	anz	19	26	12	45	19		19	26	12	45	19		19	26	12	45	19		19	26	12	45	19	
Tu3	ari	4,5	3,7	3,3	4,6	5,5		17,3	11,7	9,6	16,1	12,6		46,7	39,3	34,1	46,6	39,4		29,5	27,6	24,5	30,5	26,8	
Tu3	abw	1,8	2,1	2,7	3,1	2,0		4,5	3,7	3,8	4,7	2,9		4,0	2,6	2,8	5,4	1,9		3,9	4,1	4,2	4,3	3,1	

Bodenarten mit meist hinreichenden Datensätzen werden für den Gesamtdatenbestand "KA5" und für die sechs größten Datenquellen nach den Trockenrohdichteklassen **T1**_ (> 0,8 bis <= 1,4 g/cm³), **T3**_ (> 1,4 bis <= 1,6 g/cm³) und **T5**_ (> 1,6 bis <= 2,0 g/cm³) (in der Tabelle als "T1_" usw.) sowie nach den Humusgehaltsklassen h0+h1(in der Tabelle "**h1**" genannt) und **h2** für die Luftkapazität, nutzbare Feldkapazität und Feldkapazität - aufgelistet mit ihrer Anzahl "anz, ihrem arithmetischen Mittelwert "ari" und der Standardabweichung "abw". Das erste (linke) Feld der obersten Tabellenzeile, nennt den Bezug der Tabelle: **R-P** für Rheinland-Pfalz

	Das erste (linke) Feld der obersten Tabellenzeile,					nennt de					niana-Pi	aiz													
R-P				Luftka							eldkapazi					Feldka		I			I I	Totwass			
Bda		T1_h1	T3_h1	T5_h1	T1_h2		T5_h2		T3_h1	T5_h1			T5_h2	T1_h1	T3_h1	T5_h1	T1_h2		T5_h2	T1_h1	T3_h1	T5_h1	T1_h2	T3_h2	T5_h2
Ss	anz	36	50	6	12	5		36	50	6	12	5		36	50	6	12	5		36	50	6	12	5	
Ss	ari	36,4	31,1	16,4	34,1	31,7		12,1	11,2	14,6	12,0	10,3		14,8	13,5	18,7	14,8	12,7		2,7	2,3	4,1	2,9	2,4	
Ss	abw	7,2	6,5	6,8	2,2	3,4		6,6	4,6	2,9	3,2	1,9		7,3	5,7	5,0	3,9	3,1		1,5	1,8	3,7	1,0	1,5	
Sl2	anz	10	26	9	10	6		10	26	9	10	6		10	26	9	10	6		10	26	9	10	6	
Sl2 Sl2	ari	30,0	23,5	13,6	27,8	26,1		16,0	14,9	14,8	18,5	12,2 2,2		22,7	20,0	21,0	24,8	16,5		6,7	5,1	6,2	6,2	4,3	
	abw	4,9	5,3 23	4,9 22	4,7	3,5 12		5,1	4,9 23	4,6 22	4,2 13		12	5,3	5,3	4,5 22	6,2	2,6 12	12	2,9	1,5 23	1,9	2,6	0,6	12
SI3 SI3	anz ari	3 28,4	20,4	13,4	13 25,8	19,4		13,9	15,4	13,8	19,3	12 15,0	16,0	3 21,1	23 22,7	21,8	13 27,7	22,8	24,7	7,2	7,3	22 8,0	13 8,3	7,8	12 8,6
SI3	abw	1,6	5,2	4,6	3,8	3,5		2,8	3,9	3,5	5,3	3,5	1,9	2,8	4,5	3,5	5,4	4,3	2,8	1,8	1,8	2,3	3,2	1,2	2,1
Su2	anz	13	22	3	13	7		13	22	3	13	7	1,7	13	22	3	13	7	2,0	13	22	3	13	7	2,1
Su2	ari	27,7	25,0	15,2	31,1	29,5		18,8	15,7	15,2	16,4	11,6		24,6	19,1	22,0	21,5	14,7		5,8	3,4	6,8	5,0	3,1	
Su2	abw	7,0	7,1	5,9	5,3	3,6		7,6	7,0	3,8	3,2	3,1		6,4	7,4	3,5	4,6	3,9		2,4	1,5	0,5	2,0	1,4	
Su3	anz	11	9	8	6	6	5	11	9	8	6	6	5	11	9	8	6	6	5	11	9	8	6	6	5
Su3	ari	22,5	13,3	11,0	24,0	18,9	15,6	22,6	23,1	15,3	22,6	16,3	16,8	30,3	30,4	22,3	29,8	24,6	22,3	7,8	7,3	7,0	7,2	8,3	5,6
Su3	abw	6,0	3,6	5,5	4,8	4,4	2,9	5,6	5,1	3,4	4,5	3,6	2,5	4,7	5,9	4,3	2,8	3,3	2,8	3,5	2,6	5,3	3,4	2,9	0,9
Su4	anz	2	6	2	Ž	2	·	2	6	2		2		2	6	2	Í	2		2	6	2		2	
Su4	ari	16,3	15,5	14,7		12,0		30,5	23,7	17,9		21,4		35,5	30,2	23,1		31,4		5,0	6,4	5,2		10,1	
Su4	abw	11,9	8,2	0,3		3,8		8,7	7,7	0,4		0,6		6,5	7,5	1,1		6,3		2,2	1,7	0,8		6,9	
Ls2	anz	7	5	14	7	9	3	7	5	14	7	9	3	7	5	14	7	9	3	7	5	14	7	9	3
Ls2	ari	7,6	10,1	4,1	13,8	12,0	10,5	23,7	17,9	15,5	21,3	16,5	8,4	45,1	32,9	32,4	39,7	30,8	28,8	21,4	15,0	16,9	18,4	14,3	20,7
Ls2	abw	4,9	2,3	2,5	8,4	2,0	1,1	9,0	4,8	3,8	7,9	2,8	5,6	8,3	3,8	3,0	8,5	1,7	1,6	9,6	3,0	3,2	5,2	3,4	5,1
Ls3	anz	2	8	11	6	11	7	2	8	11	6	11	7	2	8	11	6	11	7	2	8	11	6	11	7
Ls3	ari	16,7	11,1	7,5	17,9	14,8	8,5	18,4	18,2	14,7	21,3	15,3	12,9	31,8	33,1	29,0	35,2	29,3	29,7	13,3	14,9	14,3	13,9	14,0	16,7
Ls3	abw	4,7	4,4	3,3	5,3	5,3	2,2	5,0	3,8	2,6	8,2	3,4	3,5	3,7	7,1	3,0	9,0	4,4	1,7	1,2	3,5	3,1	2,7	4,2	3,2
Ls4	anz		10	15		10	2		10	15		10	2		10	15		10	2		10	15		10	2
Ls4	ari		15,8	7,8		16,2	9,6		14,5	14,1		14,3	13,8		27,4	26,8		27,0	25,1		12,9	12,7		12,7	11,4
Ls4	abw	0	3,4	2,9	^	3,7	4,0	0	1,9	3,0	^	3,1	1,5	0	2,6	3,5		3,0	0,7	0	1,9	2,4	0	2,6	0,8
Lt2	anz	8	19	18	9	26	8	8	19	18	9	26	8	8	19	18	9	26	8	8	19	18	9	26	8
Lt2 Lt2	ari	8,8 6,4	9,2 4,0	6,2 2,8	15,6 3,2	9,3 3,0	4,5 2,3	26,7 7,7	15,5 3,1	11,8 4,5	16,0 1,3	14,6 2,7	14,5 5,3	49,8 12,0	34,1 4,3	31,6 2,8	34,4	34,4	32,7 2,2	23,1 5,4	18,6 2,6	19,8 5,0	18,4 2,2	19,8 2,7	18,3 4,6
_	abw	0,4	13	8	3,2	25	4	7,7	13	9	4	25	3,3	12,0	13	9	3,0	25	4	3,4	13	9	4	25	4,0
Lt3	anz ari		6,1	3,1	15,7	6,9	2,1		12,7	9,2	16,1	12,1	8,4		37,6	35,2	35,7	37,6	36,0		24,9	26,0	19,6	25,4	27,7
Lt3	abw		3,0	2,8	5,1	3,5	1,4		2,4	2,9	3,3	2,7	1,9		3,4	6,8	4,1	3,3	1,2		3,1	5,8	3,6	4,0	1,4
Lts	anz		5	11	3,1	9	7		5	11	3,3	9	7		5	11	1,1	9	7		5	11	3,0	9	7
Lts	ari		5,9	4,5		7,1	5,9		14,4	11,7		14,3	11,1		37,4	32,9		36,8	30,3		23,0	21,1		22,5	19,2
Lts	abw		3,5	2,3		3,9	2,4		4,1	4,3		0,9	3,8		3,3	2,8		3,3	2,8		3,7	4,1		3,7	2,3
Lu	anz	18	49	52	32	58	11	18	49	52	32	58	11	18	49	52	32	58	11	18	49	52	32	58	11
Lu	ari	12,6	7,6	4,5	16,5	9,8	4,1	21,5	19,0	14,6	19,3	17,3	14,3	39,6	36,6	33,2	34,9	34,4	33,4	18,1	17,5	18,7	15,7	17,1	19,1
Lu	abw	6,0	4,3	2,7	4,0	3,4	2,3	3,6	3,2	4,5	3,2	3,2	3,9	7,6	4,6	2,7	3,2	3,6	2,0	5,8	3,8	3,9	3,9	3,2	4,3
Uls	anz	5	22	10	8	14	4	5	22	10	8	14	4	5	22	10	8	14	4	5	22	10	8	14	4
Uls	ari	13,8	9,3	4,5	15,8	10,6	6,8	30,0	22,1	19,8	24,2	20,6	19,1	39,3	34,8	34,3	35,5	33,3	29,0	9,3	12,9	14,5	11,3	12,7	9,9
Uls	abw	4,2	4,7	2,2	4,5	3,8	4,3	4,3	4,3	4,1	6,3	4,9	1,7	4,4	4,6	2,6	7,5	4,0	2,2	3,8	4,1	3,0	3,8	4,2	3,2
Ut3	anz	23	21	16	5	11	3	23	21	16	5	11	3	23	21	16	5	11	3	23	21	16	5	11	3
Ut3	ari	11,3	7,8	3,9	16,3	8,9	2,9	28,3	24,5	19,7	25,4	23,4	27,7	40,1	36,6	34,3	36,1	35,9	35,1	11,8	12,1	14,6	10,7	12,5	7,4
Ut3	abw	3,5	4,2	1,8	1,7	1,6	2,8	4,3	4,3	3,7	2,9	3,0	2,9	5,2	3,5	1,2	1,1	1,8	1,6	3,6	2,1	3,5	2,3	2,9	1,3
Ut4	anz	32	53	26	30	37	2	32	53	27	30	37	20.6	32	53	27	30	37	200	32	53	27	30	37	2
Ut4	ari	14,1	7,0	2,6	15,1	7,8	1,1	24,0	21,2	16,6	21,4	20,9	20,6	37,0	36,9	35,2	35,9	37,3	36,8	12,9	15,7	18,6	14,5	16,4	16,1
Ut4	abw	3,9	3,3	1,3	4,5	4,6	1,1	4,5	3,1	3,4	3,4	3,8	0,7	3,7	2,8	2,6	3,1	4,1	3,0	2,6	3,5	2,2	3,6	3,2	2,3
Tu2	anz	6	29	5	7	19		6	29	5	7	19		6 48.0	29	5	7	19		6	29	5	7	19	
Tu2 Tu2	ari	3,5 2,5	2,3 1,9	1,9 1,7	3,8 1,3	3,3 2,2		16,2 3,3	11,2	8,0 2,6	13,4 5,3	11,9 3,2		48,0 5,8	42,4	36,8	46,6	42,6 2,2		31,8 7,1	31,2 3,9	28,8	33,3 4,5	30,7	
	abw						1		3,5			·	1	·	2,4	3,1	2,4		1			1,7			4
Tu3 Tu3	anz ari	9,1	6,3	2,2	17	31 6,7	5,9	6 20,2	31 14,0	14 10,9	17 17,0	31 14,1	4 11,9	6 43,8	31 37,8	14 35,3	17 40,1	31 37,9	35,5	23,6	31 23,9	14 24,3	17 23,0	23,9	23,6
•	abw	5,2	2,6	1,6	4,7	2,8	6,0	5,9	3,5	3,4	4,5	2,5	3,8	9,8	2,6	3,0	4,6	2,4	2,0	5,4	3,8	5,1	4,1	3,5	5,4
1 uJ	an W	∠,∠	۷,0	1,0	т, /	٠,٠	0,0	ر, ر	2,2	⋾,⊤	τ,∪	ر,∠	2,0	7,0	2,0	2,0	,∪	∠,→	∠,∪	٠,٠	2,0	J,1	т, 1	5,5	٠,٠

Bodenarten mit meist hinreichenden Datensätzen werden für den Gesamtdatenbestand "KA5" und für die sechs größten Datenquellen nach den Trockenrohdichteklassen T1_ (> 0,8 bis <= 1,4 g/cm³), T3_ (> 1,4 bis <= 1,6 g/cm³) und T5_ (> 1,6 bis <= 2,0 g/cm³) (in der Tabelle als "T1_" usw.) sowie nach den Humusgehaltsklassen h0+h1(in der Tabelle "h1" genannt) und h2 für die Luftkapazität, nutzbare Feldkapazität und Feldkapazität - aufgelistet mit ihrer Anzahl "anz, ihrem arithmetischen Mittelwert "ari" und der Standardabweichung "abw". Das erste (linke) Feld der obersten Tabellenzeile, nennt den Bezug der Tabelle: TEE für den forstbodenkundlichen Datenbestand von Herrn Teepe

		Das e	erste (link	(e) Feld	der obers	ten Tabe	llenzeile,	, nennt de					i forstbo	denkund	dlichen			on Herrn	Teepe						
TEE					pazität	1		1		tzbare Fe						Feldka					1	Totwass		,	1
Bda		T1_h1		T5_h1		T3_h2	T5_h2	T1_h1		T5_h1		T3_h2	T5_h2	T1_h1	T3_h1	T5_h1	T1_h2	T3_h2	T5_h2	T1_h1	T3_h1	T5_h1		T3_h2	T5_h2
Ss	anz	7	13		10	7		7	13		10	7		7	13		10	7		7	13		10	7	1
Ss	ari	32,1	22,8		31,7	25,8		15,0	18,1		15,8	13,8		19,1	20,2		19,5	16,4		4,1	2,2		3,8	3,8	—
Ss	abw	7,3	8,5		4,2	5,7		9,2	8,8		5,4	6,2		10,2	8,8		6,4	5,9		2,1	1,1		2,5	2,1	
Sl2	anz	6	3		11	3		6	3		11	3		6	3		11	3		6	3		11	3	—
Sl2	ari	25,8	20,5		25,8	19,9		17,6	15,6		22,0	18,4		24,8	24,2		26,8	23,1		7,2	8,6		5,5	4,7	
Sl2	abw	2,4	5,8	2	4,2	6,0 7		3,2	4,8 7	2	5,4	1,7		2,0	7,2	2	5,2	1,9 7		2,2	9,4 7	2	1,7	0,4	
Sl3	anz	10 29,1	7 20,0	3 10,6	33,3	12,1		10 20,6	17,6	3 18,6	8 18,7	7 15,8		10 29,3	23,6	3 25,5	8 25,0	30,4		10 8,7	6,0	6,9	6,3	7 14,6	
SI3 SI3	ari abw	6,6	2,1	1,2	4,8	5,9		4,3	2,4	0,1	4,9	8,2		3,3	1,7	0,6	4,1	5,6		1,7	3,4	0,7	5,2	8,3	
Su2	anz	25	24	5	3	15		25	24	5	3	15		25	24	5	3	15		25	24	5	3,2	15	
Su2	ari	24,9	19,5	19,2	22,7	18,0		17,6	18,1	14,7	20,7	19,7		26,5	23,9	18,5	27,1	25,4		8,9	5,8	3,8	6,4	5,7	
Su2	abw	7,3	4,8	3,0	6,9	6,4		5,1	3,9	3,8	3,3	5,9		9,8	4,1	2,7	3,7	5,7		9,7	4,0	2,6	0,4	6,8	
Su3	anz	7,5	7	3,0	6	0,4		2	7	3,0	6	3,7		2	7	2,7	6	3,7		2	7	2,0	6	0,0	
Su3	ari	17,6	16,3		25,5			28,4	21,3		21,2			38,8	26,4		28,1			10,4	5,1		7,0		
Su3	abw	7,8	2,7		7,3			12,2	2,5		2,4			18,7	2,1		4,0			6,5	0,9		4,9		
Su4	anz	3	7	3	8	2		3	7	3	8	2		3	7	3	8	2		3	7	3	8	2	
Su4	ari	22,5	14,8	10,7	22,1	11,3		12,8	14,7	14,3	15,7	15,4		26,5	27,7	27,3	29,8	32,0		13,7	13,0	13,0	14,1	16,5	
Su4	abw	1,0	1,7	1,9	5,1	1,6		0,3	1,6	3,9	0,8	0,8		0,2	0,7	1,7	1,6	1,1		0,3	2,2	5,5	0,9	0,2	
Ls2	anz	10	13	10				10	13	10	·			10	13	10				10	13	10	-	·	
Ls2	ari	25,5	14,8	7,7				20,1	12,7	14,0				33,5	28,5	27,2				13,4	15,8	13,2			
Ls2	abw	8,9	5,1	3,2				4,7	3,1	1,5				3,6	4,3	1,7				2,2	3,1	1,8			
Ls3	anz	9	4	14	9	6		9	4	14	9	6		9	4	14	9	6		9	4	14	9	6	
Ls3	ari	18,8	10,1	4,0	10,7	8,6		28,4	17,3	8,5	32,7	23,2		41,3	32,0	30,4	46,8	34,5		12,9	14,7	22,0	14,1	11,3	
Ls3	abw	4,5	5,0	1,8	4,9	7,5		8,7	6,7	3,9	10,3	6,9		7,7	3,0	2,7	10,1	5,5		1,4	8,0	4,4	4,5	3,8	
Ls4	anz		2	3					2	3					2	3					2	3			
Ls4	ari		8,5	4,3					20,0	15,0					33,5	30,3					13,5	15,3			!
Ls4	abw		4,9	4,5					4,2	3,6					4,9	0,6					9,2	4,2			
Lt2	anz	2	15					2	15					2	15					15,4	17,8				
Lt2	ari	21,0	11,5					14,6	15,4					30,1	33,2					2	15				—
Lt2	abw	3,0	4,4					4,2	4,4					5,6	4,1					1,3	3,0				
Lt3	anz																								1
Lt3	ari abw																								
Lt3				4						4						4						4			\vdash
Lts	anz ari			3,1						13,0						33,2						20,2			
Lts	abw			3,0						2,9						4,0						2,8			
Lu	anz		4	3,0	2				4	2,7	2				4	7,0	2				4	2,0	2		
Lu	ari		4,9		11,1				17,1		22,6				38,7		40,7				21,6		18,0		
Lu	abw		2,0		2,1				8,0		6,8				4,3		4,2				4,4		2,6		
Uls	anz		7	4	14				7	4	14				7	4	14	Ì			7	4	14		
Uls	ari		13,3	3,2	18,9				14,3	6,9	19,6				29,1	35,0	34,5				14,9	28,2	14,9		
Uls	abw		5,4	1,3	7,4				6,7	0,9	10,0				4,6	0,6	8,3				6,1	1,0	3,1		
Ut3	anz	3	2		8	2		3	2		8	2		3	2	·	8	2		3	2		8	2	
Ut3	ari	12,4	11,1		13,9	10,2		11,4	12,6		22,9	19,2		35,3	35,5		36,1	33,6		23,9	22,9		13,2	14,4	
Ut3	abw	1,4	0,1		7,2	3,5		1,5	1,6		4,7	4,7		1,5	0,1		5,2	4,6		0,9	1,6		2,5	0,1	
Ut4	anz	2	13		12	2		2	13		12	2		2	13		12	2		2	13		12	2	
Ut4	ari	22,9	6,4		11,8	9,7		13,2	16,4		12,8	11,7		25,4	36,3		40,0	34,6		12,2	19,9		27,2	22,9	
Ut4	abw	0,1	3,9		9,5	0,4		0,8	5,2		3,7	6,9		0,6	4,8		9,2	2,0		0,1	3,3		10,4	4,9	
Tu2	anz		3		4				3		4				3		4				3		4		
Tu2	ari		2,7		6,2				17,1		15,4				43,4		44,7				26,3		29,2		
Tu2	abw		1,7		5,8				2,9		8,1				0,8		3,5				3,5		9,1		
Tu3	anz	3	4		13	2	3	3	4		13	2	3	3	4		13	2	3	3	4		13	2	3
Tu3	ari	14,2	10,2		17,7	4,8	3,3	14,9	18,8		15,1	18,6	12,1	39,1	35,1		43,7	35,9	32,9	24,2	16,4		28,6	17,3	20,8
Tu3	abw	5,7	9,4		4,4	1,2	0,5	10,9	8,0		2,4	6,2	0,7	3,0	7,2		4,0	1,7	1,1	9,6	3,7		3,8	4,5	1,0

<u>Tabelle 7.8:</u> Gesamtporenvolumina einiger oben aus Platzgründen nicht angegebener Datenquellen

Ss ari 50,8 42,5 36,5 49,2 42,4 35,4 47,1 42,2 36,7 44,5 49,0 40,3 35,8 40,8 3 Ss abw 5,0 2,9 2,3 3,5 2,4 2,6 2,9 2,5 1,3 2,2 1,9 2,8 2,4 2,2 1 Sl2 anz 26 74 46 27 40 24 4 16 10 4 12 6 2 14 14 9 Sl2 ari 50,7 42,6 35,1 51,3 41,7 35,4 48,9 42,5 36,2 49,3 42,6 36,3 47,4 40,4 35,1 41,4 3 Sl2 abw 4,1 2,7 2,8 6,4 3,3 1,7 4,9 2,0 2,8 3,7 2,3 1,9 0,4 2,7 2,5 2,2 2 Sl3 anz <	2 36 34 51,3 2 5,4 5 10 8 52,7 0 4,9 2 3 6 49,5 2 2,9	36 50 51,3 44,6 5,4 1,8 10 26 52,7 43,4 4,9 2,5 3 23	6 35,1 2,5 9	T1_h2 T3_l 12 5 48,9 44,0 2,3 2,3 10 6	3
Ss ari 50,8 42,5 36,5 49,2 42,4 35,4 47,1 42,2 36,7 44,5 49,0 40,3 35,8 40,8 3 Ss abw 5,0 2,9 2,3 3,5 2,4 2,6 2,9 2,5 1,3 2,2 1,9 2,8 2,4 2,2 1 Sl2 anz 26 74 46 27 40 24 4 16 10 4 12 6 2 14 14 9 Sl2 ari 50,7 42,6 35,1 51,3 41,7 35,4 48,9 42,5 36,2 49,3 42,6 36,3 47,4 40,4 35,1 41,4 3 Sl2 abw 4,1 2,7 2,8 6,4 3,3 1,7 4,9 2,0 2,8 3,7 2,3 1,9 0,4 2,7 2,5 2,2 2 Sl3 ari <	3,4 51,3 2 5,4 5 10 ,8 52,7 0 4,9 2 3 ,6 49,5 2 2,9	51,3 44,6 5,4 1,8 10 26 52,7 43,4 4,9 2,5 3 23	35,1 2,5 9 34,6	48,9 44,3 2,3 2,3 10 6	
Ss abw 5,0 2,9 2,3 3,5 2,4 2,6 2,9 2,5 1,3 2,2 1,9 2,8 2,4 2,2 1 Sl2 anz 26 74 46 27 40 24 4 16 10 4 12 6 2 14 14 9 Sl2 ari 50,7 42,6 35,1 51,3 41,7 35,4 48,9 42,5 36,2 49,3 42,6 36,3 47,4 40,4 35,1 41,4 3 Sl2 abw 4,1 2,7 2,8 6,4 3,3 1,7 4,9 2,0 2,8 3,7 2,3 1,9 0,4 2,7 2,5 2,2 2,2 2 2 8 4 69 53 5 15 15 18 15 8 16 29 9 Sl3 ari 53,3 42,0 35,8 51,9 4	2 5,4 5 10 ,8 52,7 0 4,9 2 3 ,6 49,5 2 2,9	5,4 1,8 10 26 52,7 43,4 4,9 2,5 3 23	2,5 9 34,6	2,3 2,3 10 6	
Sl2 anz 26 74 46 27 40 24 4 16 10 4 12 6 2 14 14 9 Sl2 ari 50,7 42,6 35,1 51,3 41,7 35,4 48,9 42,5 36,2 49,3 42,6 36,3 47,4 40,4 35,1 41,4 3 Sl2 abw 4,1 2,7 2,8 6,4 3,3 1,7 4,9 2,0 2,8 3,7 2,3 1,9 0,4 2,7 2,5 2,2 2 Sl3 anz 22 76 88 44 69 53 5 15 15 18 15 8 16 29 9 Sl3 ari 53,3 42,0 35,8 51,9 43,0 34,8 48,9 42,3 37,5 51,4 42,6 35,7 41,2 34,4 42,8 3 Sl3 abw	5 10 ,8 52,7 0 4,9 2 3 ,6 49,5 2 2,9	10 26 52,7 43,4 4,9 2,5 3 23	9 34,6	10 6	
Sl2 ari 50,7 42,6 35,1 51,3 41,7 35,4 48,9 42,5 36,2 49,3 42,6 36,3 47,4 40,4 35,1 41,4 3 Sl2 abw 4,1 2,7 2,8 6,4 3,3 1,7 4,9 2,0 2,8 3,7 2,3 1,9 0,4 2,7 2,5 2,2 2 Sl3 anz 22 76 88 44 69 53 5 15 15 18 15 8 16 29 9 Sl3 ari 53,3 42,0 35,8 51,9 43,0 34,8 48,9 42,3 37,5 51,4 42,6 35,7 41,2 34,4 42,8 3 Sl3 abw 6,8 2,6 4,7 7,0 2,8 2,3 2,2 1,7 1,6 3,2 2,4 1,9 1,8 3,6 2,0 3 Su2	,8 52,7 0 4,9 2 3 ,6 49,5 2 2,9	52,7 43,4 4,9 2,5 3 23	34,6		1
Sl2 abw 4,1 2,7 2,8 6,4 3,3 1,7 4,9 2,0 2,8 3,7 2,3 1,9 0,4 2,7 2,5 2,2 2 Sl3 anz 22 76 88 44 69 53 5 15 15 18 15 8 16 29 9 Sl3 ari 53,3 42,0 35,8 51,9 43,0 34,8 48,9 42,3 37,5 51,4 42,6 35,7 41,2 34,4 42,8 3 Sl3 abw 6,8 2,6 4,7 7,0 2,8 2,3 2,2 1,7 1,6 3,2 2,4 1,9 1,8 3,6 2,0 3 Su2 anz 45 87 50 23 39 10 4 13 6 3 3 11 16 6	0 4,9 2 3 ,6 49,5 2 2,9	4,9 2,5 3 23			
Sl3 anz 22 76 88 44 69 53 5 15 15 18 15 8 16 29 9 Sl3 ari 53,3 42,0 35,8 51,9 43,0 34,8 48,9 42,3 37,5 51,4 42,6 35,7 41,2 34,4 42,8 3 Sl3 abw 6,8 2,6 4,7 7,0 2,8 2,3 2,2 1,7 1,6 3,2 2,4 1,9 1,8 3,6 2,0 3 Su2 anz 45 87 50 23 39 10 4 13 6 3 3 11 16 6	2 3 ,6 49,5 2 2,9	3 23	3,0	52,5 42,6	j
Sl3 ari 53,3 42,0 35,8 51,9 43,0 34,8 48,9 42,3 37,5 51,4 42,6 35,7 41,2 34,4 42,8 3 Sl3 abw 6,8 2,6 4,7 7,0 2,8 2,3 2,2 1,7 1,6 3,2 2,4 1,9 1,8 3,6 2,0 3 Su2 anz 45 87 50 23 39 10 4 13 6 3 3 11 16 6	,6 49,5 2 2,9			7,5 2,1	
Sl3 abw 6,8 2,6 4,7 7,0 2,8 2,3 2,2 1,7 1,6 3,2 2,4 1,9 1,8 3,6 2,0 3 Su2 anz 45 87 50 23 39 10 4 13 6 3 3 11 16 6	2 2,9	40.5 42.1	22	13 12	
Su2 anz 45 87 50 23 39 10 4 13 6 3 3 11 16 6	1			53,5 42,3	
	12			5,6 2,0	2,1
$ \mathbf{S}_{11} ^2$ $ \mathbf{S}_{11} ^2$ $ \mathbf{S}_{11} ^2$ $ \mathbf{S}_{12} ^2$ $ \mathbf{S}_{11}		13 22	3	13 7	
	52,3			52,5 44,7	
Su2 abw 4,5 3,7 2,7 4,5 2,3 1,6 1,2 3,4 1,3 2,2 2,5 4,7 2,9 2,7	4,3		2,7	5,0 1,9	
	2 11		8	6 6	5
	,0 52,8			53,8 43,4	
	6 4,2			3,3 1,8	0,9
Su4 anz 7 21 12 10 9 2 2 3 2 3 5 5 Su4 ari 50,6 43,2 36,3 51,8 42,3 35,9 51,6 42,7 51,4 42,1 41,6 34,9	51.0		2 37,8	43,	
Su4 ari 50,6 43,2 36,3 51,8 42,3 35,9 51,6 42,7 51,4 42,1 41,6 34,9 Su4 abw 2,9 2,5 3,9 3,3 1,5 2,7 2,5 3,0 0,7 0,3 2,1 3,1	51,9 5,4		0,8	2,5	
	7		14	7 9	3
Ls2 anz 23 31 49 25 27 10 3 7 9 12 11 5 2 4 6 2 2 2 4 4 5 2 4 6 2 2 4 4 4 4 4 4 4 4	52,6	, 3		53,4 42,8	
Ls2 abw 6,8 3,4 2,9 3,7 3,4 2,5 5,5 1,9 1,9 4,2 2,2 3,0 3,3 2,7 2,7 0,4 3,6	3,9		4,1	3,6 1,6	
Ls3 anz 20 33 52 26 32 12 8 11 3 11 6 7 6 4	2		11	6 11	7
Ls3 ari 55,0 42,4 35,1 53,8 42,4 37,5 52,0 41,9 37,8 51,3 43,1 41,1 32,3 41,5	48,5			53,1 44,	1 38,2
Ls3 abw 6,3 2,4 2,8 6,7 3,1 1,7 3,9 1,6 1,1 5,9 2,7 1,9 2,7 1,7	0,9		2,7	5,8 2,0	
	3	10	15	10	
	,0	43,2		43,	1 34,7
Ls4 abw 2,0 3,1 4,4 1,8 2,7 3,5 1,2 1,1 1,8 3,6 3,3 3,2 0,6 (7	2,2	3,6	2,6	4,8
Lt2 anz 17 58 54 32 66 13 3 13 15 19 28 2 3 6 14 2 5	8	8 19	18	9 26	8
Lt2 ari 55,3 42,7 37,1 49,3 42,7 37,4 51,0 42,1 37,0 50,1 42,5 39,0 53,8 41,6 35,3 47,5 43,4	58,5		2 37,8	50,0 43,	7 37,2
Lt2 abw 6,8 3,2 4,1 3,6 4,2 1,7 7,0 2,1 2,4 2,8 5,8 0,1 6,0 2,4 2,0 0,7 1,8	7,3	7,3 2,2	3,0	1,8 1,9	1,6
Lt3 anz 9 39 27 20 50 5 4 11 2 7 15 2 5 7 8 10		13	9	4 25	
Lt3 ari 49,2 42,7 37,5 49,4 44,2 37,9 47,6 42,3 39,7 49,6 45,0 49,8 42,4 38,2 50,0 42,3		43,7		51,3 44,	
Lt3 abw 3,0 2,5 4,3 3,7 1,9 1,1 2,3 2,1 1,6 1,9 1,3 4,0 2,8 1,2 2,7 1,2		1,9	6,8	1,2 2,0	
Lts anz 3 28 50 8 16 8 15 10 5 5 6 21 2		5	11	9	7
Lts ari 54,5 42,3 36,0 50,7 43,3 36,2 41,9 36,9 50,1 42,9 42,6 34,8 42,0		43,3		43,9	
Lts abw 4,1 2,2 2,6 2,4 2,1 2,4 1,8 1,5 2,2 2,7 2,8 2,5 1,5	10	2,7	2,6	1,7	
	2 18		52 2 37,7	32 58 51.4 44.7	
Lu ari 51,8 43,0 37,4 50,6 43,6 37,7 52,0 43,0 37,0 51,0 43,2 37,5 51,1 41,5 36,4 47,9 43,0 3 Lu abw 4,0 2,7 2,9 3,8 2,2 1,6 4,2 2,1 3,6 2,8 1,8 2,1 3,3 2,6 2,3 3,8 2,7 1				51,4 44,3 3,0 2,1	1,7
Lu abw 4,0 2,7 2,9 3,6 2,2 1,0 4,2 2,1 3,0 2,8 1,8 2,1 3,3 2,0 2,3 3,8 2,7 1 Uls anz 16 70 32 35 51 8 5 23 5 8 24 2 4 8 11 2 3	5		10	8 14	
Uls ari 50,2 42,8 37,3 51,0 43,3 36,4 49,5 42,8 38,0 51,0 43,0 37,6 49,0 42,7 35,8 45,4 43,6	53,1			51,3 44,0	
Uls abw 4,8 3,0 2,1 5,4 2,2 4,4 3,8 2,7 1,4 5,4 2,1 1,3 1,8 1,9 1,6 1,7 3,2	7,1		1,7	4,9 2,3	
Ut3 anz 43 115 65 51 73 6 5 5 2 17 11 7 66 46 11 25	23		16	5 11	
Ut3 ari 50,2 42,3 37,5 48,5 43,5 37,0 49,7 43,1 38,0 48,4 45,2 49,5 41,9 37,3 48,1 42,8	51,4			52,4 44,	
Ut3 abw 3,1 2,6 1,5 4,3 2,1 2,0 2,3 0,6 1,3 2,1 1,0 2,6 2,5 1,3 2,8 2,2	3,3			1,2 1,3	
Ut4 anz 46 219 65 87 91 6 5 25 3 16 13 3 3 93 30 11 16	32		27	30 37	
Ut4 ari 50,7 42,4 37,5 49,3 43,6 37,9 49,5 42,8 36,7 49,8 43,1 37,8 48,9 41,9 37,4 46,9 43,2	51,0			51,0 45,2	
Ut4 abw 3,4 2,0 2,1 4,0 2,7 1,1 4,2 1,4 2,3 2,6 2,2 1,0 4,4 1,8 1,7 1,8 2,0	2,7	2,7 2,0	2,6	2,8 2,0	2,1
Tu2 anz 27 113 22 89 40 2 7 21 13 9 12 42 10 60 7	6			7 19	
Tu2 ari 50,9 44,1 37,6 52,0 45,3 40,6 50,7 43,6 50,4 44,4 50,8 43,8 36,4 52,8 43,7	51,5			50,4 45,8	
Tu2 abw 3,1 2,1 2,8 4,4 2,8 0,5 3,2 2,1 3,0 1,9 3,1 1,9 2,0 4,7 1,9	3,8		3,9	1,3 1,8	
Tu3 anz 34 127 42 93 83 8 5 37 4 5 21 19 26 12 45 19	6		14	17 31	
Tu3 ari 51,2 43,4 37,4 52,4 43,6 38,0 48,5 43,8 35,8 52,4 41,3 51,3 43,0 37,4 51,2 44,9	52,9			50,9 44,	
Tu3 abw 4,1 2,3 2,7 5,5 4,8 5,0 2,0 2,4 4,3 5,4 8,7 3,7 2,0 1,5 4,0 1,5	<i>5</i> 2	5,3 1,8	3,0	2,3 1,4	4,5

8 Wie wurde die Trockenrohdichte klassifiziert?

Für die Trockenrohdichte listet Tabelle 8.1 die statistischen Maßzahlen, Tabelle 8.2 listet den Vergleich der Klassifikationen in Bodenkundlichen Kartieranleitungen und Tabelle 8.3 listet, als Anlage zur Abbildung 8.1, das gesamte, noch nicht an den Perzentilen gekappte und in kleinste Wertespannen aufgelöste Kennwertespektrum einschließlich der daraus abgeleiteten Klassifikation.

Tabelle 8.1: Statistische Maßzahlen der Trockenrohdichte

statistische Maßzahlen	Trockenrohdichte
Median	1,51
ari. Mittel	1,49
geo. Mittel	1,48
Std. Abw.	0,19
1. Perzentil	0,8
99. Perzentil	1,9

Tabelle 8.2: Vergleich der Klassifikationen der Trockenrohdichte in g / cm³

Klasse	Bewertung	Wertspanne der KA3	Wertspanne der KA4	Wertspanne der KA5
1	sehr gering	nicht belegt	unter 1,25	unter 1,2
2	gering	nicht belegt	1,25 bis 1,45	1,2 bis 1,4
3	mittel	nicht belegt	1,45 bis 1,65	1,4 bis 1,6
4	hoch	nicht belegt	1,65 bis 1,85	1,6 bis 1,8
5	sehr hoch	nicht belegt	über 1,85	über 1,8

Die Klassifikation der Trockenrohdichte in der KA5 ist wie in der KA4 gleich abständig, jedoch um 0,05 g / cm³ nach unten verschoben. Damit wird die Klassenbelegung symmetrischer. Ursache der in der KA4 etwas höher angesetzten Klassengrenzen ist vermutlich das im KA4-Datenbestand größere Gewicht der Daten aus der Quelle "DDR-Vetterlein".

Die Häufigkeit der TRD-Klasse 1 in Abbildung 8.1 bzw. Tabelle 8.3 ist mit 1625 knapp halb so groß wie der der Klasse 2 mit 3094 Datensätzen und beide zusammen erreichen 27 % des gesamten Datenmaterials. Darin spiegelt sich mit großer Wahrscheinlichkeit die Dominanz der Proben unter Acker oder Grünland bzw. der geringe Anteil von Proben der viel lockerer gelagerten Oberböden aus dem Wald wieder. Bei der Diskussion der Kennwerte ist demnach auf Jene Bodenarten zu achten, die im Bereich der TRD unter 1,4 nur mit wenigen Datensätzen belegt sind, um die Aussagesicherheit dort durch eine verstärkte Probenahme zu verbessern.

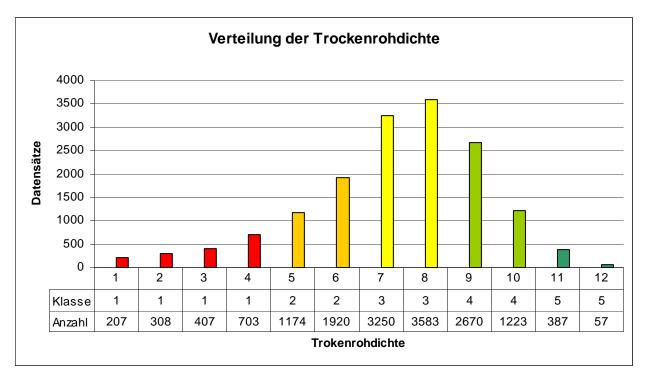


Abbildung 8.1: Säulendiagramm der Trockenrohdichte über alle Datensätze.

Die Farbe der Säulen repräsentiert die in der zweiten Abszissenzeile gelistete Klasse, deren Belegung in der dritten Abszissenzeile erscheint.

Tabelle 8.3: Klassifikation der Trockenrohdichte für die KA5

Wertespanne	Anzahl	Summe	Prozent	Klasse	Bewertung
0,8 bis < 0,9	207				
0,9 bis < 1,0	308				
1,0 bis < 1,1	407				
1,1 bis < 1,2	703	1625	8,1	1	sehr gering
1,2 bis < 1,3	1174				
1,3 bis < 1,4	1920	3094	18,9	2	gering
1,4 bis < 1,5	3250				
1,5 bis < 1,6	3583	6833	44,4	3	mittel
1,6 bis < 1,7	2670				
1,7 bis < 1,8	1223	3893	25,7	4	hoch
1,8 bis < 1,9	387				
1,9 bis < 2,0	57	444	2,7	5	sehr hoch
gesamt	15889		100,0		

9 Wie wurde die effektive Lagerungsdichte klassifiziert?

Für die effektive Lagerungsdichte listet Tabelle 9.1 die statistischen Maßzahlen, Tabelle 9.2 listet den Vergleich der Klassifikationen in Bodenkundlichen Kartieranleitungen und Tabelle 9.3 listet, als Anlage zur Abbildung 9.1, das gesamte, noch nicht an den Perzentilen gekappte und in kleinste Wertespannen aufgelöste Kennwertespektrum einschließlich der daraus abgeleiteten Klassifikation.

<u>Tabelle 9.1:</u> Statistische Maßzahlen der effektiven Lagerungsdichte

statistische Maßzahlen	Lagerungsdichte
Median	1,69
ari. Mittel	1,68
geo. Mittel	1,66
Std. Abw.	0,20
1. Perzentil	0,9
99. Perzentil	2,1

Tabelle 9.2: Vergleich der Klassifikationen der effektiven Lagerungsdichte

Klasse	Bewertung	Wertspanne der KA3	Wertspanne der KA4	Wertspanne der KA5
1	sehr gering	unter 1,2	unter 1,4	unter 1,4
2	gering	1,2 bis 1,4	1,4 bis 1,6	1,4 bis 1,6
3	mittel	1,4 bis 1,75	1,6 bis 1,8	1,6 bis 1,8
4	hoch	1,75 bis 1,95	1,8 bis 2,0	1,8 bis 2,0
5	sehr hoch	über 1,95	über 2,0	über 2,0

Die Klassifikation der effektiven Lagerungsdichte der KA5 ist mit der Klassifikation der KA4 identisch.

Gegenüber der KA3 ist die Klassifikation in der KA5 gleich abständig.

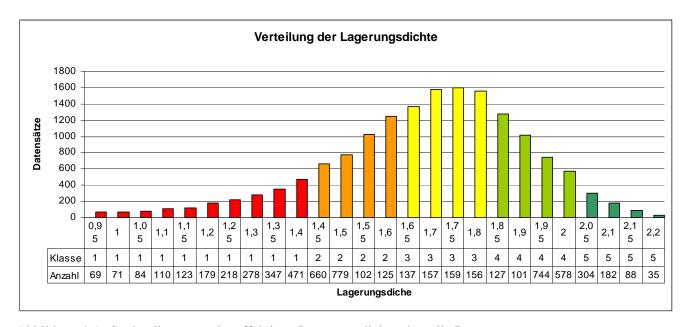


Abbildung 9.1: Säulendiagramm der effektiven Lagerungsdichte über alle Datensätze.

Die Farbe der Säulen repräsentiert die in der zweiten Abszissenzeile gelistete Klasse, deren Belegung in der dritten Abszissenzeile erscheint.

Die Häufigkeit der Klasse 1 in Abbildung 9.1 bzw. Tabelle 9.3 ist mit 1950 knapp halb so groß wie der der Klasse 2 mit 3714 Datensätzen und beide zusammen erreichen 25 % des gesamten Datenmaterials. Darin spiegelt sich mit großer Wahrscheinlichkeit die Dominanz der Proben unter Acker oder Grünland bzw. der geringe Anteil von Proben der viel lockerer gelagerten Oberböden aus dem Wald wieder. Bei der Diskussion der Kennwerte ist demnach auf Jene Bodenarten zu achten, die im Bereich der effektiven Lagerungsdichte unter 1,55 nur mit wenigen Datensätzen belegt sind, um die Aussagesicherheit dort durch eine verstärkte Probenahme zu verbessern.

<u>Tabelle 9.3:</u> Klassifikation der effektiven Lagerungsdichte für die KA5

Wertespanne	Anzahl	Summe	Prozent	Klasse	Bewertung
0,90 bis < 0,95	69				
0,95 bis < 1,00	71				
1,00 bis < 1,05	84				
1,05 bis < 1,10	110				
1,10 bis < 1,15	123				
1,15 bis < 1,20	179				
1,20 bis < 1,25	218				
1,25 bis < 1,30	278				
1,30 bis < 1,35	347				
1,35 bis < 1,40	471	1950	12,2	1	sehr gering
1,40 bis < 1,45	660				
1,45 bis < 1,50	779				
1,50 bis < 1,55	1024				
1,55 bis < 1,60	1251	3714	23,2	2	gering
1,60 bis < 1,65	1372				
1,65 bis < 1,70	1578				
1,70 bis < 1,75	1597				
1,75 bis < 1,80	1563	6110	38,2	3	mittel
1,80 bis < 1,85	1278				
1,85 bis < 1,90	1016				
1,90 bis < 1,95	744				
1,95 bis < 2,00	578	3616	22,6	4	hoch
2,00 bis < 2,05	304				
2,05 bis < 2,10	182				
2,10 bis < 2,15	88				
2,15 bis < 2,20	35	609	3,8	5	sehr hoch
gesamt	15999		100,0		

10 Wie wurde das Gesamtporenvolumen klassifiziert?

Für das Gesamtporenvolumen listet Tabelle 10.1 die statistischen Maßzahlen, Tabelle 10.2 listet den Vergleich der Klassifikationen in Bodenkundlichen Kartieranleitungen und Tabelle 10.3 listet, als Anlage zur Abbildung 10.1, das gesamte, noch nicht an den Perzentilen gekappte und in kleinste Wertespannen aufgelöste Kennwertespektrum einschließlich der daraus abgeleiteten Klassifikation.

Tabelle 10.1: Statistische Maßzahlen des Gesamtporenvolumens

statistische Maßzahlen	Gesamtporenvolumen
Median	43,0
ari. Mittel	43,6
geo. Mittel	43,1
Std. Abw.	7,0
1. Perzentil	29,4
99. Perzentil	69,5

<u>Tabelle 10.2:</u> Vergleich der Klassifikationen des Gesamtporenvolumens in Volumen-%

Klasse	Bewertung	Wertspanne der KA3	Wertspanne der KA4	Wertspanne der KA5
1	sehr gering	nicht belegt	nicht belegt	unter 36
2	gering	nicht belegt	nicht belegt	36 bis 38
3	mittel	nicht belegt	nicht belegt	38 bis 46
4	hoch	nicht belegt	nicht belegt	46 bis 54
5	sehr hoch	nicht belegt	nicht belegt	über 54

Das Gesamtporenvolumen wurde im Rahmen der KA3 und KA4 nicht klassifiziert.

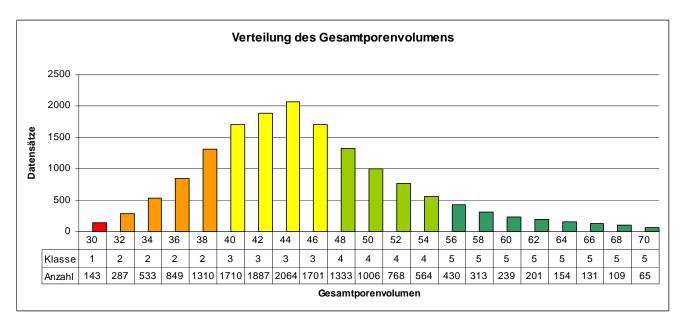


Abbildung 10.1: Säulendiagramm des Gesamtporenvolumens über alle Datensätze.

Die Farbe der Säulen repräsentiert die in der zweiten Abszissenzeile gelistete Klasse, deren Belegung in der dritten Abszissenzeile erscheint.

Das Gesamtporenvolumen zeigt für die kleinen Wertespannen von 2 Volumen-% einen sehr weit gespannten Bereich hoher Belegung: von 34 bis 54 Volumen-% werden jeweils mehr als 500 Datensätze gezählt. Während diese Verteilung jedoch in den niedrigen Wertebereich unter 34 hinein schnell zusammenbricht (keine Werte unter 28), streicht sie im hohen Wertebereich noch bis an die 70 Volumen-% das 99. Perzentil liegt bei 69,5! Und hat im Bereich 54 bis 70 noch einmal über 1600 Werte. Angesichts dieser Verteilung musste bei der Klassifikation in Kauf genommen werden, dass die unterste Klasse einerseits extrem niedrig belegt ist und andererseits trotz des links offenen Intervalls "unter 30" aus bodenphysikalischen Gründen nicht die gleiche Klassenbreite von 8 Prozentpunkten erreichen (also bis 22 Volumen-%) erreichen kann, wie die anderen Klassen.

<u>Tabelle 10.3:</u> Klassifikation des Gesamtporenvolumens für die KA5

Wertespanne	Anzahl	Summe	Prozent	Klasse	Bewertung
28 bis < 30	143	143	0,9	1	sehr gering
30 bis < 32	287				
32 bis < 34	533				
34 bis < 36	849				
36 bis < 38	1310	2979	18,9	2	gering
38 bis < 40	1710				
40 bis < 42	1887				
42 bis < 44	2064				
44 bis < 46	1701	7362	46,6	3	mittel
46 bis < 48	1333				
48 bis < 50	1006				
50 bis < 52	768				
52 bis < 54	564	3671	23,2	4	hoch
54 bis < 56	430				
56 bis < 58	313				
58 bis < 60	239				
60 bis < 62	201				
62 bis < 64	154				
64 bis < 66	131				
66 bis < 68	109				
68 bis < 70	65	1642	10,4	5	sehr hoch
gesamt	15797		100,0		

11 Wie wurde die Luftkapazität klassifiziert?

Für die Luftkapazität listet Tabelle 11.1 die statistischen Maßzahlen, Tabelle 11.2 listet den Vergleich der Klassifikationen in Bodenkundlichen Kartieranleitungen und Tabelle 11.3 listet, als Anlage zur Abbildung 11.1, das gesamte, noch nicht an den Perzentilen gekappte und in kleinste Wertespannen aufgelöste Kennwertespektrum einschließlich der daraus abgeleiteten Klassifikation.

Tabelle 11.1: Statistische Maßzahlen der Luftkapazität

statistische Maßzahlen	Luftkapazität		
Median	7,8		
ari. Mittel	9,9		
geo. Mittel	7,3		
Std. Abw.	7,4		
1. Perzentil	0,4		
99. Perzentil	35,6		

Die Standardabweichung der Luftkapazität ist sehr hoch; wie bodenartenspezifische Statistiken zeigen, kommt dies sehr wahrscheinlich überwiegend von den Sanden; zukünftig ist zu untersuchen, welche, ggf. bodenartenspezifische Standardabweichung bei wiederholten Laboranalysen als üblich und welche als Hinweis auf uneinheitliche Probenaufbereitung und Analysendurchführung gelten soll.

Tabelle 11.2: Vergleich der Klassifikationen der Luftkapazität in Volumen-%

Klasse	Bewertung	Wertspanne der KA2 unter pF 1,8	Wertspanne der KA2 unter pF 2,5	Wertspanne der KA3	Wertspanne der KA4	Wertspanne der KA5
1	sehr gering	unter 4	unter 5	unter 3	unter 2	unter 2
2	gering	4 bis 8	5 bis 10	3 bis 7	2 bis 4	2 bis 5
3	mittel	8 bis 12	10 bis 15	7 bis 12	4 bis 12	5 bis 13
4	hoch	12 bis 16	15 bis 20	12 bis 18	12 bis 20	13 bis 26
5	sehr hoch	über 16	über 20	über 18	über 20	über 26

unter pF 1,8 bei Böden mit hohem Grundwasserstand oder Stauwasser

unter pF 2,5 bei Böden mit tiefem Grundwasserstand

Der Vergleich der Klassifikationen der Luftkapazität in der KA3, KA4 und KA5 zeigt eine Ausweitung in den unteren Wertebereich von der KA3 zur KA4 und danach eine weitere in den oberen Bereich von der KA4 zur KA5. Diese Verschiebungen sind begründet durch die Historie in der Bodenkartierung: zum Zeitpunkt der KA3 standen landwirtschaftliche Nutzflächen bei weitem im Vordergrund, während sich über die KA4 zur KA5 der Datenbestand auf die extremwertreicheren, forstlich genutzten Böden ausweitete. Dies sind im Datenbestand der KA5 vor allem die "Teepe-Datensätze" und spiegelt sich in der großen Wertespanne zwischen 1. und 99. Per-

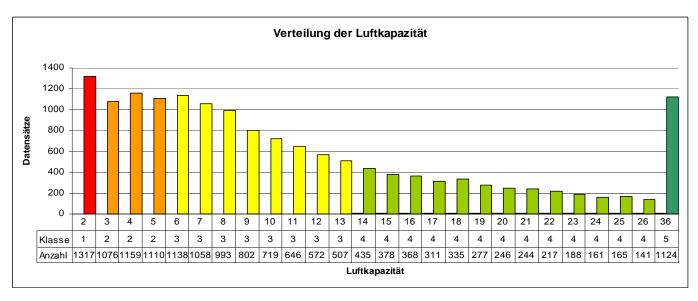


Abbildung 11.1: Säulendiagramm der Luftkapazität über alle Datensätze.

Die Farbe der Säulen repräsentiert die in der zweiten Abszissenzeile gelistete Klasse, deren Belegung in der dritten Abszissenzeile erscheint.

Die Abbildung 11.1 (und Tabelle 11.3) zeigt deutlich die Linksschiefe der Verteilung der Luftkapazität und den sehr weit in hohe Werte ausstreichenden Ast der Verteilungskurve; man beachte: die letzte Wertespanne reicht von 26 bis < 36!. Daher liegt die Klassifikation der Luftkapazität zwar anfänglich nahe den Klassifikationen der KA3 und KA4, weitet sich aber für die Klassen "hoch" und "sehr hoch" stärker auf.

Um die Lesbarkeit der Abbildung zu erhalten wurde die Abszisse am Ende "gestaucht", so dass der Häufigkeitsbalken aller kleinen Wertespannen von 26 bis 36 stark überhöht wurde.

Die Luftkapazität zeigt erwartungsgemäß eine deutlich links schiefe Werteverteilung. Ähnlich wie beim Gesamtporenvolumen ist die vollständige Wertespanne so breit, dass für die Klassen 1 eine extrem schmale Klassenbreite akzeptiert werden und die oberste Klasse 5 mit dem 99. Perzentil abschließen muss. Ist davon auszugehen, dass eine zukünftig verstärkte Beprobung sehr locker gelagerter Waldoberböden die Linksschiefe der Verteilung zwar nicht aufhebt, wohl aber deutlich schwächt, weil mit der Verschiebung der Beprobung vom dichter gelagerten Ackerboden zum Waldboden die Anzahl der Proben mit Luftkapazitäten deutlich oberhalb des Mittelwertes von 10 Volumen-% stark zunehmen muss.

<u>Tabelle 11.3:</u> Klassifikation der Luftkapazität für die KA5

Wertespanne	Anzahl	Summe	Prozent	Klasse	Bewertung
0.5 bis < 2	1317	1317	8,5	1	sehr gering
2 bis < 3	1076				
3 bis < 4	1159				
4 bis < 5	1110	3177	20,4	2	gering
5 bis < 6	1138				
6 bis < 7	1058				
7 bis < 8	993				
8 bis < 9	802				
9 bis < 10	719				
10 bis < 11	646				
11 bis < 12	572				
12 bis < 13	507	7038	45,3	3	mittel
13 bis < 14	435				
14 bis < 15	378				
15 bis < 16	368				
16 bis < 17	311				
17 bis < 18	335				
18 bis < 19	277				
19 bis < 20	246				
20 bis < 21	244				
21 bis < 22	217				
22 bis < 23	188				
23 bis < 24	161				
24 bis < 25	165				
25 bis < 26	141	3832	24,6	4	hoch
26 bis < 36	1124	1124	0,7	5	sehr hoch
gesamt	15546		100,0		

12 Wie wurde die nutzbare Feldkapazität klassifiziert?

Für die nutzbare Feldkapazität listet Tabelle 12.1 die statistischen Maßzahlen, Tabelle 12.2 listet den Vergleich der Klassifikationen in Bodenkundlichen Kartieranleitungen und Tabelle 12.3 listet, als Anlage zur Abbildung 12.1, das gesamte, noch nicht an den Perzentilen gekappte und in kleinste Wertespannen aufgelöste Kennwertespektrum einschließlich der daraus abgeleiteten Klassifikation.

Tabelle 12.1: Statistische Maßzahlen der nutzbaren Feldkapazität

statistische Maßzahlen	nutzbaren Feldkapazität
Median	17,4
ari. Mittel	17,9
geo. Mittel	16,7
Std. Abw.	6,4
1. Perzentil	4,3
99. Perzentil	36,4

Tabelle 12.2: Vergleich der Klassifikationen der nutzbaren Feldkapazität in Volumen-%

Klasse	Bewertung	Wertspanne der KA2 für pF 1,8 bis 4,2	Wertspanne der KA2 für pF 2,5 bis 4,2	Wertspanne der KA3	Wertspanne der KA4	Wertspanne der KA5
1	sehr gering	unter 6	unter 5	unter 5	unter 6	unter 6
2	gering	6 bis 12 5 bis 10		5 bis 9	6 bis 14	6 bis 14
3	mittel	12 bis 18	10 bis 15	9 bis 14	14 bis 22	14 bis 22
4	hoch	18 bis 24	15 bis 20	14 bis 20	22 bis 30	22 bis 30
5 (a)	sehr hoch	über 24 24 bis 30	über 20 20 bis 25	über 20	über 30	über 30
5 b	äußerst hoch	30 bis 36	25 bis 30	nicht belegt	nicht belegt	nicht belegt
5 c	extrem hoch	über 36	über 30	nicht belegt	nicht belegt	nicht belegt

pF 1,8 bis 4,2 bei Böden mit hohem Grundwasserstand oder Stauwasser

pF 2,5 bis 4,2 bei Böden mit tiefem Grundwasserstand

Die Klassifikation der nutzbaren Feldkapazität in der KA5 entspricht ihrer Klassifikation in der KA4.

Die nutzbare Feldkapazität wird in der KA2 zweifach klassifiziert, weil dort noch der bestimmende Einfluss oberflächennahen Grundwassers auf diesen Kennwert bis in die Klassifikation hinein abgebildet wurde. Davon wurde, weil die vor allem bei Sanden stark variierenden Werte der nutzbaren Feldkapazität auf die Hysterese zurückgeführt wurden, in der KA3 und KA4 Abstand genommen. Neuere Befunden bestätigen jedoch, dass der Einfluss der engen Grobporen auf die nutzbare Feldkapazität einerseits stark von deren Anteil im Boden und damit der Körnung, genauer vom Übergang zwischen Grobschluff und Feinstsand abhängt, andererseits bei

oberflächennahem Grundwasser eher der Luftkapazität, bei grundwasserfreien Böden eher der nutzbaren Feldkapazität zuzuschlagen ist.

Zur Abbildung dieses Zusammenhangs gab es in der KA2 zwei Klassifikationen. Für die KA5 blieb es bei der einen, am pF-Wert 1,8 orientierten Klassifikation. Auch zukünftig wäre eine Wiedereinführung der doppelten Klassifikation nicht erforderlich, wenn bei der Berechnung der nutzbaren Feldkapazität die engen Grobporen einheitlich, wie oben beschreiben, in Abhängigkeit vom Bodenwasserhaushalt differenziert der Luft- oder Feldkapazität zugeschlagen würden; dazu gab es einen unvollständigen Ansatz in der Erstauflage der KA5 und einen vollständigen Ansatz in Form einer Wertetabelle im "Anhang A" der DIN 4220_2008 sowie in dieser Dokumentation anderem Ort.

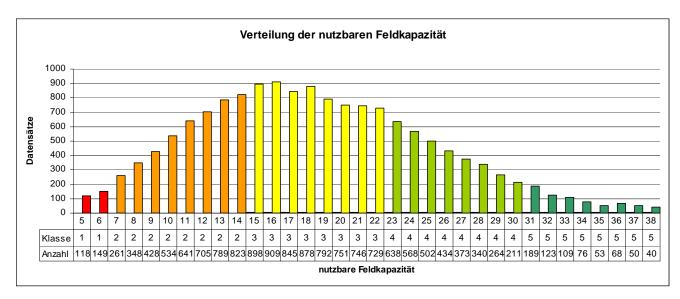


Abbildung 12.1: Säulendiagramm der nutzbaren Feldkapazität über alle Datensätze.

Die Farbe der Säulen repräsentiert die in der zweiten Abszissenzeile gelistete Klasse, deren Belegung in der dritten Abszissenzeile erscheint.

<u>Tabelle 12.3:</u> Klassifikation der nutzbaren Feldkapazität für die KA5

Wertespanne	Anzahl	Summe	Prozent	Klasse	Bewertung
4 bis < 5	118				
5 bis < 6	149	267	1,7	1	sehr gering
6 bis < 7	261				
7 bis < 8	348				
8 bis < 9	428				
9 bis < 10	534				
10 bis < 11	641				
11 bis < 12	705				
12 bis < 13	789				
13 bis < 14	823	4529	29,4	2	gering
14 bis < 15	898				
15 bis < 16	909				
16 bis < 17	845				
17 bis < 18	878				
18 bis < 19	792				
19 bis < 20	751				
20 bis < 21	746				
21 bis < 22	729	6548	42,6	3	mittel
22 bis < 23	638				
23 bis < 24	568				
24 bis < 25	502				
25 bis < 26	434				
26 bis < 27	373				
27 bis < 28	340				
28 bis < 29	264				
29 bis < 30	211	3330	21,6	4	hoch
30 bis < 31	189				
31 bis < 32	123				
32 bis < 33	109				
33 bis < 34	76				
34 bis < 35	53				
35 bis < 36	68				
36 bis < 37	50				
37 bis < 38	40	708	4,6	5	sehr hoch
gesamt	15382		100,0		

13 Wie wurde die Feldkapazität klassifiziert?

Für die Feldkapazität listet Tabelle 13.1 die statistischen Maßzahlen, Tabelle 13.2 listet den Vergleich der Klassifikationen in Bodenkundlichen Kartieranleitungen und Tabelle 13.3 listet, als Anlage zur Abbildung 13.1, das gesamte, noch nicht an den Perzentilen gekappte und in kleinste Wertespannen aufgelöste Kennwertespektrum einschließlich der daraus abgeleiteten Klassifikation.

Tabelle 13.1: Statistische Maßzahlen der Feldkapazität

statistische Maßzahlen	Feldkapazität
Median	34,7
ari. Mittel	33,7
geo. Mittel	32,3
Std. Abw.	8,8
1. Perzentil	8,1
99. Perzentil	58,7

Tabelle 13.2: Vergleich der Klassifikationen der Feldkapazität in Volumen-%

Klasse	Bewertung	Wertspanne der KA2 über pF 1,8	Wertspanne der KA2 über pF 2,5	Wertspanne der KA3	Wertspanne der KA4	Wertspanne der KA5
1	sehr gering	unter 13	unter 12	unter 13	unter 13	unter 21
2	gering	13 bis 26	12 bis 24	13 bis 26	13 bis 26	21 bis 30
3	mittel	26 bis 39	24 bis 36	26 bis 39	26 bis 39	30 bis 39
4	hoch	39 bis 52	38 bis 48	39 bis 52	39 bis 52	39 bis 48
5	sehr hoch	über 52	über 48	über 52	über 52	über 48

über pF 1,8 bei Böden mit hohem Grundwasserstand oder Stauwasser

über pF 2,5 bei Böden mit tiefem Grundwasserstand

Zur doppelten Klassifikation in der KA2 siehe den Kommentar zur nutzbaren Feldkapazität.

Die Klassifikation der Feldkapazität setzt in der KA5 8 mm später ein und ist mit einer einheitlichen Klassenbreite von 9 mm deutlich enger gefasst als die Klassifikation in der KA4 mit einer ebenfalls einheitlichen Klassenbreite von 13 mm. Tabelle und Abbildung zeigen, dass die ältere Klassifikation mit unter 3 % Belegung der untersten und obersten Klasse sowie mit einer über 55 % liegenden Belegung der mittleren Klasse zu einer wesentlich steileren Verteilung geführt hätte.

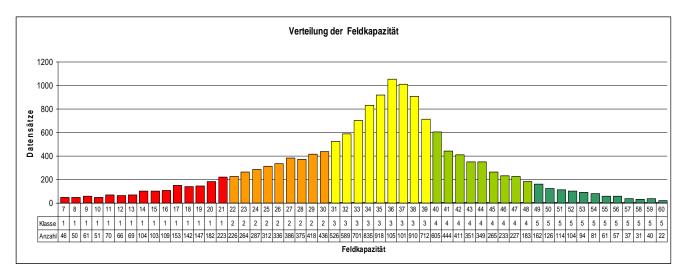


Abbildung 13.1: Säulendiagramm der Feldkapazität über alle Datensätze.

Die Farbe der Säulen repräsentiert die in der zweiten Abszissenzeile gelistete Klasse, deren Belegung in der dritten Abszissenzeile erscheint.

<u>Tabelle 13.3:</u> Klassifikation der Feldkapazität für die KA5

Wertespanne	Anzahl	Summe	Prozent	Klasse	Bewertung
6 bis < 7	46				
7 bis < 8	50]			
8 bis < 9	61				
9 bis < 10	51				
10 bis < 11	70				
11 bis < 12	66				
12 bis < 13	69				
13 bis < 14	104				
14 bis < 15	103				
15 bis < 16	109				
16 bis < 17	153				
17 bis < 18	142				
18 bis < 19	147				
19 bis < 20	182				
20 bis < 21	223	1576	9,9	1	sehr gering
21 bis < 22	226				
22 bis < 23	264				
23 bis < 24	287				
24 bis < 25	312				
25 bis < 26	336				
26 bis < 27	386				
27 bis < 28	375				
28 bis < 29	418				
29 bis < 30	436	3040	19,2	2	gering

Wertespanne	Anzahl	Summe	Prozent	Klasse	Bewertung
30 bis < 31	526				
31 bis < 32	589				
32 bis < 33	701				
33 bis < 34	835				
34 bis < 35	918				
35 bis < 36	1052				
36 bis < 37	1011				
37 bis < 38	910				
38 bis < 39	712	7254	45,7	3	mittel
39 bis < 40	605				
40 bis < 41	444				
41 bis < 42	411				
42 bis < 43	351				
43 bis < 44	349				
44 bis < 45	265				
45 bis < 46	233				
46 bis < 47	227				
47 bis < 48	183	3068	19,3	4	hoch
48 bis 49	162				
49 bis 50	126				
50 bis 51	114				
51 bis 52	104				
52 bis 53	94				
53 bis 54	81				
54 bis 55	61				
55 bis 56	57				
56 bis 57	37				
57 bis 58	31				
58 bis 59	40				
59 bis 60	22	929	5,9	5	sehr hoch
gesamt	15867		100,0		

14 Wie wurde der Totwasseranteil klassifiziert?

Für den Totwasseranteil listet Tabelle 14.1 die statistischen Maßzahlen, Tabelle 12.2 listet den Vergleich der Klassifikationen in Bodenkundlichen Kartieranleitungen und Tabelle 3 listet, als Anlage zur Abbildung 1, das gesamte, noch nicht an den Perzentilen gekappte und in kleinste Wertespannen aufgelöste Kennwertespektrum einschließlich der daraus abgeleiteten Klassifikation.

Tabelle 14.1: Statistische Maßzahlen des Totwasseranteils

statistische Maßzahlen	Totwasseranteil
Median	14,5
ari. Mittel	15,9
geo. Mittel	13,1
Std. Abw.	8,7
1. Perzentil	1,1
99. Perzentil	39,5

Tabelle 14.2: Vergleich der Klassifikationen des Totwasseranteils in Volumen-%

Klasse	Bewertung	Wertspanne der KA3	Wertspanne der KA4	Wertspanne der KA5
1	sehr gering	nicht belegt	nicht belegt	unter 5
2	gering	nicht belegt	nicht belegt	5 bis 10
3	mittel	nicht belegt	nicht belegt	10 bis 20
4	hoch	nicht belegt	nicht belegt	20bis 35
5	sehr hoch	nicht belegt	nicht belegt	über 35

Der Totwasseranteil wurde im Rahmen der KA3 und KA4 nicht klassifiziert.

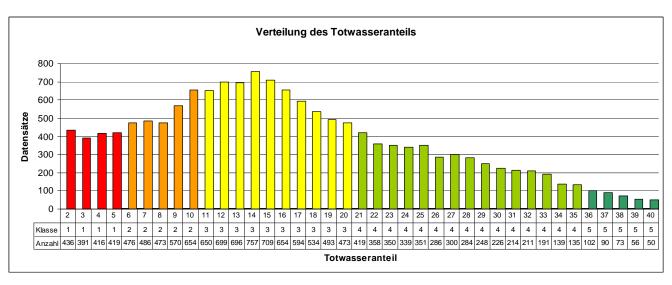


Abbildung 14.1: Säulendiagramm des Totwasseranteils über alle Datensätze.

Die Farbe der Säulen repräsentiert die in der zweiten Abszissenzeile gelistete Klasse, deren Belegung in der dritten Abszissenzeile erscheint.

<u>Tabelle 14.3:</u> Klassifikation des Totwasseranteils für die KA5

Wertespanne	Anzahl	Summe	Prozent	Klasse	Bewertung
1 bis < 2	436				
2 bis < 3	391				
3 bis < 4	416				
4 bis < 5	419	1662	11,1	1	sehr gering
5 bis < 6	476				
6 bis < 7	486				
7 bis < 8	473				
8 bis < 9	570				
9 bis < 10	654	2659	17,7	2	gering
10 bis < 11	650				
11 bis < 12	699				
12 bis < 13	696				
13 bis < 14	757				
14 bis < 15	709				
15 bis < 16	654				
16 bis < 17	594				
17 bis < 18	534				
18 bis < 19	493				
19 bis < 20	473	6259	41,7	3	mittel
20 bis < 21	419				
21 bis < 22	358				
22 bis < 23	350				
23 bis < 24	339				
24 bis < 25	351				
25 bis < 26	286				
26 bis < 27	300				
27 bis < 28	284				
28 bis < 29	248				
29 bis < 30	226				
30 bis < 31	214				
31 bis < 32	211				
32 bis < 33	191				
33 bis < 34	139				
34 bis < 35	135	4051	27,0	4	hoch
35 bis < 36	102				
36 bis < 37	90				
37 bis < 38	73				
38 bis < 39	56				
39 bis < 40	50	371	2,5	5	sehr hoch
27 DIS < 40	30	571	-,-	_	bein noen

15 Weshalb nimmt der Totwasseranteil mit zunehmender Trockenrohdichte ab?

Die Tabelle 15.1 listet je Bodenart für drei TRD-Klassen das Gesamtporenvolumen als Summe aus Luft- und Feldkapazität, sowie das Totwasser, beides in Volumen-%, und aus beiden Werten den Anteil des Totwassers am Gesamtporenvolumen in % auf.

Die Tabelle15.1 ist Grundlage der fachlichen Diskussion über die anscheinend fehlende Abnahme des Totwasseranteils mit steigender Trockenrohdichte. Denn wie anderenorts in dieser Dokumentation ausgeführt, ist der Gesamtdatenbestand auch hinsichtlich der Herkunft der Proben, die zwar einer Bodenart, aber unterschiedlichen TRD-Klassen zuzuordnen sind, recht heterogen. Daher ist die Wahrscheinlichkeit, über alle Bodenarten und über die TRD-Klassen hinweg in den ermittelten Kennwerten physikalische Abhängigkeiten wieder zu finden sehr gering.

Zur Erläuterung: Verdichtungen treten entweder als Folge von Einlagerungen oder als Folge von Sackungen auf.

Bei Sackungen werden zunächst die größten Grobporen zu engen und damit langsam dränenden Grobporen und die langsam dränenden Grobporen werden zu Mittelporen. Die Mittelporen werden praktisch nie zu Feinporen reduziert.

Bei Einlagerungsverdichtungen, beispielsweise infolge einer Tonverlagerung, erhöht sich der Feinporenanteil. Das lässt sich nur im Vergleich mit demselben, aber einlagerungsfreiem Substrat zeigen und ist mit einer Zunahme der (Fein-) Schluff- und Tongehalte verbunden (Hüllengefüge bleiben hier außen vor).

In die Kennwertermittlung gehen viele Datensätze unterschiedlicher Substrate ein. Zudem werden die Kennwerte zweimal für zusammengefasste Stufen der Trockenrohdichte (TRD1+2 sowie TRD4+5) dargestellt. Damit sind die Voraussetzungen für die Widerspiegelung dieser Erwartung eigentlich nicht mehr gegeben. Bildet man jedoch aus Luft- und Feldkapazität das Gesamtporenvolumen und drückt den Totwasseranteil in % des Gesamtporenvolumens aus, dann ist in Tabelle 15.1 trotz der vorgenannten starken Einschränkungen in die Vergleichbarkeit noch immer für mehr als die Hälfte der Totwassergehalte eine Abnahme bzw. eine annähernde Konstanz des Totwasseranteils mit steigender Trockenrohdichte zu sehen.

Tabelle15.1: Anteil des Totwasseranteils in % am Gesamtporenvolumen Benachbarte Tabellenfelder, in denen der Totwasseranteil in % am Gesamtporenvolumen mit steigender Trockenrohdichte

- steigt, sind grün hinterlegt.
- im Bereich +/- zwei Volumen-% gleich bleibt, sind gelb hinterlegt. um mehr als 2 Volumen-% sinkt, sind rot hinterlegt.

	Gesamtporenvolumen= Luft- +Feldkapazität			Totwasser			Totwasser in %		
	in Volumen-%			in Volumen-%			am Gesamtporenvolumen		
Bodenart	TRD1+2	TRD3	TRD4+5	TRD1+2	TRD3	TRD4+5	TRD1+2	TRD3	TRD4+5
Ss	50	43	37	5	4	3	10,0	9,3	8,1
SI2	51	43	36	8	7	6	15,7	16,3	16,7
SI3	52	42	35	12	9	8	23,1	21,4	22,9
SI4	54	42	34	14	12	11	25,9	28,6	32,4
Slu	52	43	37	15	12	11	28,8	27,9	29,7
St2	50	42	33	8	6	5	16,0	14,3	15,2
St3	53	44	35	17	15	14	32,1	34,1	40,0
Su2	50	44	36	6	5	4	12,0	11,4	11,1
Su3	52	43	36	10	8	6	19,2	18,6	16,7
Su4	53	43	36	12	9	7	22,6	20,9	19,4
Ls2	53	43	37	19	18	17	35,8	41,9	45,9
Ls3	54	42	36	18	17	16	33,3	40,5	44,4
Ls4	54	43	35	19	16	15	35,2	37,2	42,9
Lt2	53	43	37	24	22	21	45,3	51,2	56,8
Lt3	53	44	38	28	27	25	52,8	61,4	65,8
Lts	54	43	36	27	23	20	50,0	53,5	55,6
Lu	53	43	37	20	19	18	37,7	44,2	48,6
Uu	53	45	38	13	12	12	24,5	26,7	31,6
Uls	52	43	38	15	13	12	28,8	30,2	31,6
Us	52	44	36	13	10	10	25,0	22,7	27,8
Ut2	50	43	38	12	11	12	24,0	25,6	31,6
Ut3	50	43	38	13	12	12	26,0	27,9	31,6
Ut4	51	44	38	16	16	16	31,4	36,4	42,1
Tt	54	46	37	36	30	23	66,7	65,2	62,2
TI	53	45	38	33	28	24	62,3	62,2	63,2
Tu2	52	46	39	31	30	26	59,6	65,2	66,7
Tu3	53	44	38	28	25	25	52,8	56,8	65,8
Tu4	51	43	38	22	20	19	43,1	46,5	50,0
Ts2	52	43	37	31	26	22	59,6	60,5	59,5
Ts3	52	43	37	29	24	21	55,8	55,8	56,8
Ts4	56	42	36	26	18	19	46,4	42,9	52,8

Was bedeutet die wieder aufgenommene Aufteilung der nutzbaren Feldkapazität in die pF-Bereiche 1,8 bis 2,5 und 2,5 bis 4,2?

In Böden mit Stauwasser- oder Grundwassereinfluss stellt sich nach Niederschlägen oder bei Wasserentzug durch Pflanzern schneller ein neues Gleichgewicht ein als bei reinen Sickerwasserböden. Ursache ist die im zeitlichen Mittel höhere Bodenfeuchte durch Stau- oder Grundwasser und die daraus resultierende höhere Wasserleitfähigkeit.

Es ist daher sinnvoll, der Bereich der Wasserspannung für die nutzbare Feldkapazität grundwasserfreie Böden anders zu definieren als bei grundwasserbeeinflussten Böden. Dies wurde in der KA2 durch die unterschiedliche Definition der nutzbaren Feldkapazität und bei der mittelmaßstäbigen Bodenkarte (MMK) der ehemaligen DDR durch das Konzept der Hydromorphiestufen "anhydromorph" und "hydromorph" berücksichtigt; siehe auch die TGL 3122-04 mit dem Konzept der von den Bodenarten abhängigen pF-Werten zur Berechnung des "Feuchteäquivalents für Gruppen von Körnungsarten".

Die Tabelle 16.1 stellt die vom Bodenwasserregime abhängige Zuordnung der engen Grobporen eGp zur Luft-kapazität bei grundwasserbeeinflussten Böden und zur nutzbaren Feldkapazität bei grundwasserfreien Böden dar. (1 hPa = 1 cm WS).

Bei grundwasserfreien Böden sind die engen Grobporen eGp im zeitlichen Mittel häufiger entleert (geringere ungesättigte Wasserleitfähigkeit) daher werden die eGp der Luftkapazität zugeschlagen und von der Feldkapazität und damit auch von der nutzbaren Feldkapazität abgezogen.

Bei grundwasserbeeinflussten Böden führen die im zeitlichen Mittel häufiger wassergefüllten engen Grobporen eGp zu einer vergleichsweise höheren ungesättigten Wasserleitfähigkeit. Daher werden die eGp von der Luftkapazität abgezogen und der Feldkapazität und damit auch der nutzbaren Feldkapazität zugeschlagen.

Tabelle 16.1 Definition der Kennwerte zum Wasser- und Lufthaushalt

<u>Aufteilung in Luft- und nutzbare Feldkapazität für</u>

<u>grundwasserfreie Böden:</u> LK = LK + eGp nFK = nFK eGp

grundwasserbeeinflusste Böden: LK = LK nFK = nFK FK = FK

grundwasserbeeiniiu	issie boden. LK	. – LK ni	FK - NFKFK - FK	
Saugspannung	< 63 hPa	63 bis < 300 hPa	300 bis < 15000 hPa	≥ 15000 hPa
pF-Wert	< 1,8	1,8 bis < 2,5	2,5 bis < 4,2	≥ 4,2
Porenäquivalent	> 50 μm	50 bis > 10 μm	10 bis $> 0.2 \mu m$	≤ 0,2 µm
Porenbezeichnung	weite Grobporen	enge Grobporen	Mittelporen	Feinporen
Bodenwasser	schnell bewegliches	langsam bewegliches	pflanzen- verfügbares	nicht pflanzen- verfügbares
	Sicker	rwasser	Haftv	vasser
grundwasserfreie Böden	LK	eGp	nFK	TOT
grundwasserbeeinflusste Böden	Luftkapazität	nutzbare	Feldkapazität	Totwasser
		Gesamt-	Porenvolumen	

- <u>Grundwasserfreie Böden</u> sind Böden ohne Grundwasser oder Grundwasserstand unter 20 dm bzw. Böden ohne Staunässe oder mit sehr schwacher bis schwacher Staunässe.
- <u>Grundwasserbeeinflusste Böden</u> sind Böden mit einem Grundwasserstand oberhalb 20 dm bzw. Böden mit mittlerer bis sehr starker Staunässe

Zur Verdeutlichung skizziert Abbildung 16.1 die tiefenabhängige Verteilung von Wasserspannungsbereichen eines Bodens ohne Grundwasseranschluss mit einem Boden mit mittlerem Grundwasserstand in 100 bzw. 150 cm Tiefe. In den von Grundwasser beeinflussten Böden wird ein Gleichgewichtszustand angenommen, der durch die Steigung der Wasserspannung - proportional zur Entfernung zum Grundwasserspiegel - verdeutlicht wird. Auf diesen Gleichgewichtszustand hin stellen sich die Böden bei Wasserüberschuss wie durch Niederschläge oder bei Wasserentzug wie durch Pflanzen wieder ein.

Auf Grund der mit der Tiefe zunehmenden Wasserleitfähigkeit entleeren Böden mit Grundwasseranschluss ihre weiten Grobporen schneller als Böden ohne Grundwasseranschluss. Andererseits setzt in diesen Böden bei Wasserentzug durch Pflanzen der kompensierende Kapillarenaufstieg ein, der Böden ohne Grundwasseranschluss fehlt. Die engen Grobporen werden in grundwasserbeeinflussten Böden so seltener entleert und sind daher der nutzbaren Feldkapazität zuzurechnen.

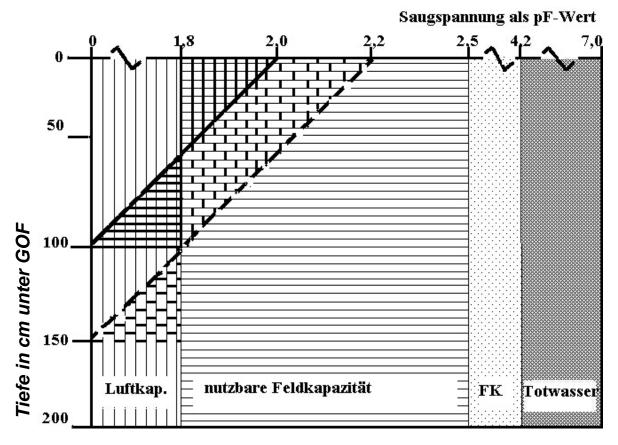


Abbildung 16.1: Tiefenabhängige Verteilung der Luftkapazität (vertikale Linien), nutzbaren Feldkapazität (horizontale Linien), Feldkapazität (gepunktet) und des Totwassers (gekreuzte Linien) für ein homogenes Bodenprofil bis 2 m Tiefe:

- ohne Grundwasseranschluss (alle dünnen Linien)
- mit mittlerem Grundwasserstand in 100 cm Tiefe (dicke, durchgezogene Linien)
- mit mittlerem Grundwasserstand in 150 cm Tiefe (dicke, gebrochene Linien)

Bei stau- und grundwasserfreien Böden kann kein eindeutiger Gleichgewichtszustand postuliert werden. Hier bestimmen die freie Versickerung sowie die durch Pflanzen verstärkte und durch deren Wurzeln tief in den Boden reichende Verdunstung die Bodenwasserspannung einige Tage nach einem Niederschlag. Auf Grund der fehlenden Nachlieferung aus Stau- oder Grundwasser werden daher schon nach wenigen Tagen auch die engen Grobporen entleert.

Um bodenhydrologische Standortbedingungen bei der Anwendung bodenphysikalischer Kennwerte besser ab-

bilden zu können,	' 1 1' D " 1 '	1 4 1	٠, ٠	1 6	4 1 T	1 11 11 11	C 1 1
niiden zii konnen	wird die Berlicksi	chtigung der	7W/21911110	detinierten	niitznaren E	elakanazitat ei	nntanien
Uliucii Zu Kulliicii,	WII a aic Delacksi	chinguing uci .	Zwcistung	ucililici tcii	nutzoaren 1	Ciunapazitat Ci	mpromen.

17 Wie sieht die Kennwerttabelle mit der über alle Bodenarten aufgeteilten nutzbaren Feldkapazität aus?

Tabelle 17.1 Kennwerte über alle Bodenarten für die pF-Bereiche 1,8 bis 2,5 "pF 1" und 2,5 bis 4,2 "pF 2"

mit folgender Aufteilung in Luft- und nutzbare Feldkapazität für:

		<u>influsste B</u>	ouen.	LK = LK	<u> </u>	111	FK = nFK		FK = 1	ΓK					
Bodenarten	LK	LK	LK	nFK	nFK	nFK	eGp	eGp	eGp	FK	FK	FK	TOT	TOT	TOT
Kurzzeichen	ρt1+2	ρt3	ρt4+5	ρt1+2	ρt3	ρt4+5	ρt1+2	ρt3	ρt4+5	ρt1+2	ρt3	ρt4+5	ρt1+2	ρt3	ρt4+5
Ss	25	23	20	20	16	14	11	9	7	25	20	17	5	4	3
SI2	23	18	13	20	18	17	10	9	8	28	25	23	8	7	6
SI3	18	15	10	22	18	17	8	6	5	34	27	25	12	9	8
SI4	18	12	8	22	18	15	7	6	5	36	30	26	14	12	11
Slu	14	10	7	23	21	19	7	6	5	38	33	30	15	12	11
St2	24	20	15	18	16	13	8	7	6	26	22	18	8	6	5
St3	18	14	9	18	15	12	6	5	4	35	30	26	17	15	14
Su2	24	21	15	20	18	17	12	10	9	26	23	21	6	5	4
Su3	17	14	10	25	21	20	13	11	8	35	29	26	10	8	6
Su4	14	11	8	27	23	21	10	9	7	39	32	28	12	9	7
Ls2	13	9	6	21	16	14	6	5	3	40	34	31	19	18	17
Ls3	15	9	6	21	16	14	5	4	2	39	33	30	18	17	16
Ls4	15	11	7	20	16	13	5	4	3	39	32	28	19	16	15
Lt2	11	7	5	18	14	11	3	2	2	42	36	32	24	22	21
Lt3	8	5	3	17	12	10	2	2	2	45	39	35	28	27	25
Lts	10	6	5	17	14	11	3	2	2	44	37	31	27	23	20
Lu	12	7	4	21	17	15	4	3	2	41	36	33	20	19	18
Uu	10	7	3	30	26	23	8	6	3	43	38	35	13	12	12
Uls	13	8	5	24	22	21	7	6	5	39	35	33	15	13	12
Us	11	9	4	28	25	22	9	8	4	41	35	32	13	10	10
Ut2	10	6	3	28	26	23	8	6	3	40	37	35	12	11	12
Ut3	11	6	3	26	25	23	6	4	2	39	37	35	13	12	12
Ut4	12	7	3	23	21	19	4	3	2	39	37	35	16	16	16
Tt	3	3	2	15	13	12	2	1	0	51	43	35	36	30	23
TI	5	4	3	15	13	11	3	1	0	48	41	35	33	28	24
Tu2	5	4	3	16	12	10	2	1	0	47	42	36	31	30	26
Tu3	8	6	3	17	13	10	2	1	0	45	38	35	28	25	25
Tu4	10	6	3	19	17	16	3	2	1	41	37	35	22	20	19
Ts2	5	4	3	16	13	12	2	1	0	47	39	34	31	26	22
Ts3	7	6	5	16	13	11	3	2	1	45	37	32	29	24	21
Ts4	13	10	6	17	14	11	4	3	2	43	32	30	26	18	19
Sande															
fS, fSms, fSgs	24	22	16	20	18	15	10	9	7	26	23	19	6	5	4
mS, mSfs, mSgs	25	23	19	20	15	12	11	9	7	25	19	15	5	4	3
gS	24	25	22	22	13	11	14	8	7	26	16	13	4	3	2

Die Tabelle 17.1 entspricht dem Anhang zur DIN 4220. Sie gibt detailliert für alle Bodenarten die vom Anteil enger Grobporen, eGp, abhängige Korrektur der nutzbaren Feldkapazität, nFK, nach pF 1,8 an. Damit wird der in der Erstauflage der KA5 gegebene Widerspruch zwischen der Definition der nFK der Sande (nach pF 2,5) und der nFK aller übrigen Bodenarten (nach pF 1,8) aufgelöst und abgesehen von der DIN 4220 - erstmals für alle Bodenarten eine an pF 1,8 oder pF 2,5 orientierte nFK gemeinsam vorgelegt. Die fachlichen Hintergründe finden sich im 16. Abschnitt dieser Dokumentation.

18 Können die neuen Kennwerte der KA5 auf die Bodenarten nach WRB bezogen werden?

Das — meist als gleichseitiges Dreieck gezeichnete — Körnungsdiagramm der WRB ist entsprechend der Definitionen der internationalen Bodenarten völlig anders aufgeteilt als das Diagramm der KA5; die Unterschiede zeigt Abbildung 18.1. Obwohl sich derartig die gegenseitigen Flächenanteile der KA5- und WRB-Bodenarten berechnen lassen, reicht das für eine Übertragung der Kennwerte nicht aus. Denn die den Kennwerten zu Grunde liegenden Datensätze sind innerhalb der Flächen der KA5-Bodenarten sehr ungleich verteilt und es ist praktisch nicht möglich, die Kennwerte je KA5-Bodenarten entsprechend der Lage der ihnen zugeordneten Datensätze zu gewichten. Daher wurden WRB-Kennwerte nicht proportional zu den Schnittflächen übertragen, sondern nach demselben Verfahren wie für die KA5 abgeleitet, also durch Gruppieren der Datensätze nach den WRB-Bodenarten, nach Trockenrohdichte und Humusstufe und durch anschließende Mittelwertbildung. Das Ergebnis zeigt die Tabelle 1 mit den Kennwerten der WRB-Bodenarten.

Die definierenden Kornfraktionen der Bodenarten der USDA -NRCS und FAO weichen im Gegensatz zu den Kornfraktionen der WRB von den Kornfraktionen nach KA5 ab. Die Kornfraktionen Ton, Schluff und Sand bzw. clay, silt, sand haben nach der USDA ihre Obergrenzen bei 2, 50 und 2 000 μm und nicht wie bei der KA5 und der WRB bei 2, 63 und 2 000 μm. Diese Verschiebung der Schluffgrenze von 63 auf 50 μm bedeutet, dass in Deutschland bei exakt gleichem Boden und identischer Probenaufbereitung geringfügig weniger (Feinst-) Sand und dafür mehr (Grob-) Schluff gemessen wird. Dieser Unterschied lässt sich trotz einiger Umrechnungsalgorithmen nicht endgültig ausgleichen.

Angesichts der geringeren Anzahl an Bodenarten in der USDA, FAO aber auch WRB, 12, gegenüber der KA5, 32, und angesichts des großen Datenbestandes der KA5 wird der durch diesen Unterschied bedingte Zuordnungsfehler als gering eingestuft. Das heißt, dass die hier vorgestellten Kennwerte nach WRB zugleich auch eine gute Näherung an Kennwerte für USDA und FAO darstellen müssen.

In Tabelle 18.1 sind die WRB-Bodenarten silty loam mit rund 3400 Datensätzen und sandy loam mit rund 2000 Datensätzen am häufigsten vertreten; für den sandy clay loam fanden sich hingegen nur unter 10 Datensätze. Generell wurden für die meisten Bodenarten je Trockenrohdichteklasse hinreichende Anzahlen an Datensätzen getroffen, so dass verlässliche Kennwerte durch Mittelwertbildung berechnet werden konnten. Lediglich für die Trockenrohdichteklasse 1 waren die Bodenarten überwiegend zu niedrig belegt.

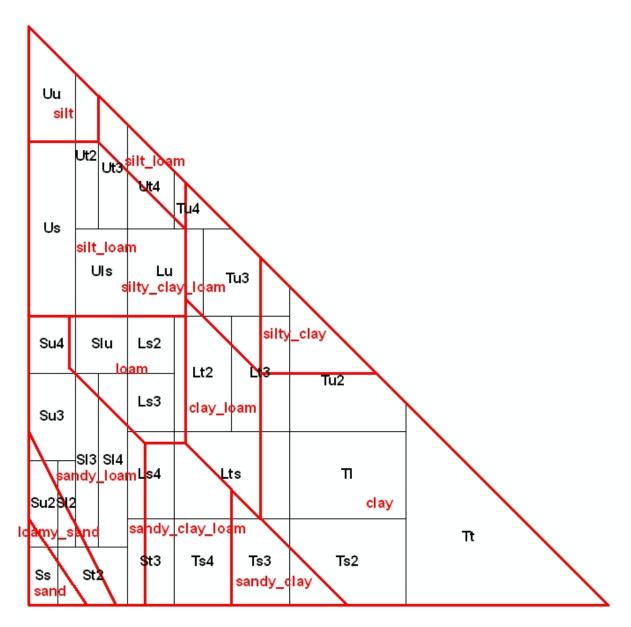


Abbildung 18.1: Überlagerung des Körnungsdiagramms nach KA5 (schwarz) mit dem Körnungsdiagramm nach WRB, FAO, USDA-NRCS (rot)

WRB — world reference base; USDA — United States Department of Agriculture;

NRCS — Natural Resources Conservation Service (früher Soil Conservation Service); FAO — Food and Agriculture Organization der UNO

Tabelle 18.1 Arithmetische Mittelwerte bodenphysikalischer Kennwerte je WRB-Textur-Klasse, klassifiziert nach der Trockenrohdichte, mit im Mittel 1 % Humus

Anzahl der Datensätze zur Berechnung LK Porengröße über 50 µm (pF unter 1,8 = unter 63 hPa) Trockenrohdichte unter 1,2 g / cm³ eGp Porengröße 10 bis 50 µm (pF 2,5 bis 1,8 = 63 bis 300 hPa) 2 Trockenrohdichte 1,2 bis 1,4 g / cm³ nFK Porengröße 0,2 bis 50 µm (pF 4,2 bis 1,8 = 63 bis 15 000 hPa) Porengröße unter 50 μ m (pF über 1,8 = 63 bis 15 000 hPa) Trockenrohdichte 1,4 bis 1,6 g / cm³ FK 4+5 Trockenrohdichte über 1,6 g / cm³ TOT Porengröße unter 0.2 (pF über 4.2 = über 15000 hPa)

mit folgender Aufteilung in Luft- und nutzbare Feldkapazität für:

<u>grundwasserfreie Böden:</u> LK = LK + eGp nFK = nFK - eGp FK = FK - eGp

grundwasserbeeinflusste Böden: LK = LK nFK = nFK FK = FK

Die Anzahl der Datensätze beträgt für eGp ein Drittel bis zur Hälfte der jeweils gelisteten Anzahl "n".

WRB-, FAO- USDA-Textur	n TRD1	n TRD2	n TRD3	n TRD4+5	LK TRD1	LK TRD2	LK TRD3	LK TRD4+5	nFK TRD1	nFK TRd2	nFK TRD3	nFK TRD4+5	eGp TRD1	eGp TRD2	eGp TRD3	eGp TRD4+5	FK TRD1	FK TRD2	FK TRD3	FK TRD4+5	TOT TRD1	TOT TRD2	TOT TRD3	TOT TDR4+5
sand	16	93	501	316	25,7	24,6	24,0	19,7	22,2	19,3	15,1	14	12,6	9,8	7,6	6,9	29,7	24,1	18,5	17,0	7,5	4,8	3,4	3,0
loamy sand	14	113	351	275	23,3	24,5	20,6	14,7	19,1	18,8	17,2	17	5,9	8,9	7,5	8,0	33,4	24,5	22,2	21,5	14,3	5,7	5,0	4,5
sandy loam	60	197	642	107 8	25,3	18,6	14,4	9,1	22,2	21,6	18,7	16,8	8,1	8,3	7,1	5,9	32,3	31,3	28,0	25,8	10,1	9,7	9,3	9,0
< 10 % clay	33	105	334	344	25,7	19,0	15,2	10,7	22,3	22,2	19,9	18,2	8,8	10,5	8,5	6,1	31,2	30,8	27,3	24,8	8,9	8,6	7,4	6,6
> 10 % clay	27	92	308	734	25,0	18,1	13,5	8,3	22	21	17,3	15,2	7,3	5,9	5,5	4,8	33,5	31,8	28,8	26,2	11,5	10,8	11,5	11,0
silty loam	119	641	1888	753	15,6	11,4	6,9	3,7	26,3	23,4	21,8	20,1	6,1	5,4	3,4	2,6	42,1	38,2	36,2	34,1	15,8	14,8	14,4	14,0
< 12 % clay	21	82	214	90	13,6	11,0	7,6	3,9	30,7	25,2	24,3	23,3	7,8	6,3	6,0	5,8	43,7	38,1	35,5	33,3	13,0	12,9	11,2	11,0
> 12 % clay	98	559	1674	663	16,0	11,4	6,8	3,7	25,3	23,1	21,5	19,7	6,0	5,3	3,1	2,2	41,8	38,3	36,3	34,2	16,5	15,2	14,8	14,5
silt	11	41	95	37	12,0	8,2	6,0	2,4	30,9	28,7	26,4	24,7	8,6	7,8	4,9	3,6	42,3	41,0	37,0	35,1	11,4	12,3	10,6	10,4
loam	69	174	443	591	19,9	13,9	9,6	6,3	23,4	19,7	17,6	14,5	9,7	4,8	4,5	2,5	38,7	36,2	33,0	29,5	15,3	16,5	15,4	15,0
sandy clay loam	1	10	73	241	10,5	9,6	8,9	5,7	24,5	22,6	15,2	12	5,5	0,8	0,2	2,1	45,5	41,9	33,6	29,3	21,0	19,3	18,4	17,3
clay loam	18	94	252	199	9,7	8,9	6,6	4,0	22	15,4	13,1	11	1,8	0,2	0,7	0,8	48,1	40,6	36,6	33,2	26,1	25,2	23,5	22,2
silty clay loam	75	218	580	172	13,4	8,8	5,6	3,2	21	17,1	14,1	10,8	5,2	1,7	1,7	2,0	47,9	40,9	37,8	34,4	26,9	23,8	23,7	23,6
sandy clay	0	1	4	2	6,9	5,6	3,9	3,8	21,2	17,6	11	8,3	5,4	2,8	2,0	6,1	50,1	46,0	39,0	32,2	28,9	28,4	28,0	23,9
silty clay	25	117	206	41	5,2	4,6	3,5	2,6	19,2	14,7	11,7	9,3	1,5	1,9	1,9	0,9	51,8	46,1	40,9	36,6	32,6	31,4	29,2	27,3
clay	38	170	192	27	5,1	4,2	3,0	3,7	20,4	14,2	12,2	11,8	0,8	1,2	2,0	3,8	52,9	46,1	41,8	34,8	32,5	31,9	29,6	23,0
< 60 % clay	20	113	147	27	6,8	4,9	3,2	3,7	19,1	14,7	12,3	11,8	1,3	1,2	2,1	3,8	51,4	45,3	41,3	34,8	32,3	30,6	29,0	23,0
> 60 % clay	18	57	45	0	3,2	2,8	2,4	3,7	26	13,2	11,9	12,4	3,9	1,5	1,9	12,4	54,5	47,8	43,6	36,4	32,6	34,6	31,7	24,0

Die Standardabweichung des Gesamtporenvolumens lag über alle Trockenrohdichteklassen bei 6 bis 7 %. Die Luftkapazität nimmt vom sand über loamy sand, sandy loam und silty loam zum silt deutlich ab, während die Abnahme mit steigenden Tongehalt vom loam über sandy clay loam, clay loam, silty clay loam, sandy clay zum silty clay weniger deutlich ist. Der Totwasseranteil steigt praktisch proportional zum Tongehalt und zeigt im Vergleich zu den anderen Kennwerten die geringste Abhängigkeit zur Trockenrohdichte.

In Tabelle 18.11 wurde die Zeilen grau unterlegt, die über die Standard-Definitionen der WRB-Bodenarten hinausgehen. Diese Unterteilungen der Bodenarten dienen dazu, den Einfluss des Tongehaltes innerhalb einer WRB-Bodenart auf die bodenphysikalischen Kennwerte herauszustellen.

So zeigte die Unterteilung der WRB-Textur-Klassen sandy loam und silty loam, dass deren tonärmere Bereiche bei mittlerer bis sehr hoher Trockenrohdichte in der Luft-kapazität und nutzbaren Feldkapazität über sowie in der Feldkapazität unter dem Wert der gesamten, undifferenzierten Bodenarten liegen. Auch die Unterteilung des clay erlaubt eine bessere Abbildung des Tongehaltes, in diesem Fall auf die Feldkapazität und den Totwasseranteil, die oberhalb von 60 % Ton deutlich über dem Wert des gesamten, undifferenzierten clay liegen.

Tabelle 18.2 listet die ganzzahligen spezifischen Zu- und Abschläge auf die bodenphysikalischen Kennwerte je WRB-Textur-Klasse bei einer Trockenrohdichte von 1,4 bis 1,6 g / cm³. Die Einschränkung auf ganzzahlige Werte und auf die mittlere Klasse der Trockenraumdichte ergibt sich aus der Datenlage und den weit gefassten Textur-Klassen der WRB. Nach Tabelle 2 werden in dieser Klasse der Trockenraumdichte die Zu- und Abschläge auf die Luftkapazität fast ausnahmslos durch die Zu- und Abschläge auf die Feldkapazität kompensiert. Diese Humuskorrekturen jenseits von 5 % organischer Substanz sind auf Grund des hier knappen Datenmaterials nicht sehr sicher. Hinzu kommt, dass bei höheren Humusgehalten Art und Anteil faseriger Humuskomponenten starken Einfluss auf die Strukturbildung gewinnt.

<u>Tabelle 18.2</u> Korrekturwerte der bodenphysikalischen Kennwerte je WRB-Bodenart in Abhängigkeit von den Humusstufen

h2 Humusgehalt 1 bis 2 % h3 Humusgehalt 2 bis 4 % h4 Humusgehalt 4 bis 8 % h5 Humusgehalt 8 bis 15 %

WRB-, FAO-, USDA-		Luftka	pazität		nut	zbare Fe	eldkapaz	zität		Feldka	pazität	
Bodenart	h2	h3	h4	h5	h2	h3	h4	h5	h2	h3	h4	h5
sand	0	-1	-2	-3	1	3	4	5	3	6	9	12
loamy sand	0	0	-1	-2	2	3	4	6	3	6	10	13
sandy loam	1	2	3	4	2	3	4	5	3	6	9	13
sandy loam < 10 % clay	2	3	4	6	1	2	3	4	2	4	8	11
sandy loam > 10 % clay	1	2	3	4	2	4	5	7	3	7	11	14
silty loam	2	4	6	8	2	3	4	5	3	5	9	13
silty loam < 12 % clay	2	3	5	8	1	2	3	4	2	4	7	10
silty loam > 12 % clay	2	4	6	7	2	3	4	6	4	7	11	14
silt	2	3	5	9	1	2	3	4	2	4	8	11
loam	1	2	3	4	1	3	5	8	3	6	11	14
sandy clay loam	1	2	4	5	2	4	7	9	4	6	12	15
clay loam	1	2	5	6	3	5	8	10	5	7	13	15
silty clay loam	2	3	4	6	2	5	8	10	6	8	12	14
sandy clay	2	3	4	5	2	5	7	9	5	6	12	14
silty clay	1	2	3	7	1	4	6	9	5	6	11	14
clay	1	2	3	7	2	4	6	8	5	6	10	12
clay < 60 % clay	1	2	3	7	2	4	6	8	5	6	11	13
clay > 60 % clay	1	2	4	8	2	4	5	7	5	6	9	11

19 Wie wurde die gesättigte Wasserleitfähigkeit klassifiziert und berechnet?

Für die gesättigte Wasserleitfähigkeit listet Tabelle 19.1 die statistischen Maßzahlen, Tabelle 19.2 listet den Vergleich der Klassifikationen in Bodenkundlichen Kartieranleitungen und Tabelle 19.3 listet, als Anlage zur Abbildung 19.1, das gesamte, noch nicht an den Perzentilen gekappte und in kleinste Wertespannen aufgelöste Kennwertespektrum einschließlich der daraus abgeleiteten Klassifikation.

Tabelle 19.1: Statistische Maßzahlen der gesättigten Wasserleitfähigkeit

statistische Maßzahlen	Feldkapazität
Median	32,1
ari. Mittel	171,0
geo. Mittel	15,7
Std. Abw.	408,3
1. Perzentil	0,2
99. Perzentil	1880,4

Tabelle 19.2: Vergleich der Klassifikationen der gesättigten Wasserleitfähigkeit in cm /d

Klasse	Bewertung	Wertspanne der KA2	Wertspanne der KA3	Wertspanne der KA4	Wertspanne der KA5
1	sehr gering	unter 6	unter 1	unter 1	unter 1
2	gering	6 bis 16	1 bis 10	1 bis 10	1 bis 10
3	mittel	16 bis 40	10 bis 40	10 bis 40	10 bis 40
4	hoch	40 bis 100	40 bis 100	40 bis 100	40 bis 100
5	sehr hoch	über 100	100 bis 300	100 bis 300	100 bis 300
6	äußerst hoch	nicht belegt	über 300	über 300	über 300

Die Klassifikation der gesättigten Wasserleitfähigkeit für die KA5 entspricht den Klassifikationen nach KA3 und KA4. Die aus statistischer Sicht sinnvolle Optimierung durch Verschieben der Grenze von 300 auf 400 cm / Tag wurde auf Grund ihrer Geringfügigkeit nicht vorgenommen, um die an die Klassifikation gebundenen Bewertungen nicht zu verändern.

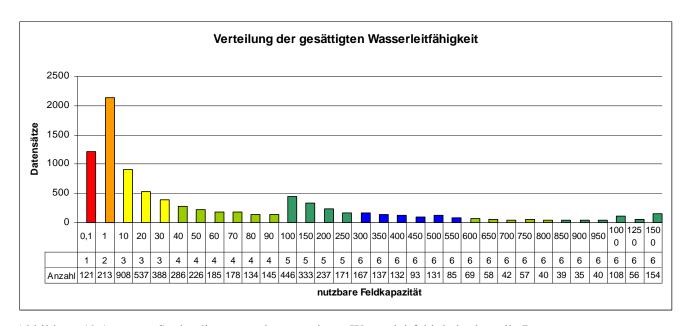


Abbildung 19.1: Säulendiagramm der gesättigten Wasserleitfähigkeit über alle Datensätze.

Die Farbe der Säulen repräsentiert die in der zweiten Abszissenzeile gelistete Klasse, deren Belegung in der dritten Abszissenzeile erscheint.

<u>Tabelle 19.3:</u> Klassifikation der gesättigten Wasserleitfähigkeit für die KA5

Wertespanne	Anzahl	Summe	Prozent	Klasse	Bewertung
0,1 bis < 1	1210	1210	13,5	1	sehr gering
1 bis < 10	2139	2139	23,9	2	gering
10 bis < 20	908				
20 bis < 30	537				
30 bis < 40	388	1833	20,4	3	mittel
40 bis < 50	286				
50 bis < 60	226				
60 bis < 70	185				
70 bis < 80	178				
80 bis < 90	134				
90 bis < 100	145	1154	12,9	4	hoch
100 bis < 150	446				
150 bis < 200	333				
200 bis < 250	237				
250 bis < 300	171	1187	13,2	5	sehr hoch
300 bis < 350	167				
350 bis < 400	137				
400 bis < 450	132				
450 bis < 500	93				
500 bis < 550	131				
550 bis < 600	85				
600 bis < 650	69				
650 bis < 700	58]			
700 bis < 750	42				
750 bis < 800	57				
800 bis < 850	40				
850 bis < 900	39				
900 bis < 950	35				
950 bis < 1000	40				
1000 bis < 1250	108]			
1250 bis < 1500	56				
über 1500	154	1443	16,1	6	extrem hoch

Der Ableitung der bodenartenspezifischen gesättigten Wasserleitfähigkeit liegen knapp 9000 Datensätze zu Grunde. Aufgrund der großen Wertespanne über 3 Zehnerpotenzen wurde auf Basis geometrischer an Stelle von arithmetischen Mittelwerten gearbeitet.

Die beiden folgenden Tabellen 19.4 und 19.5 geben einen ersten Überblick über die Wertespektren für verschiedene Kombinationen aus Bodenart, Humusgehalt und Trockenrohdichte bzw. effektiver Lagerungsdichte.

Tabelle19.4 Geometrische Mittelwerte der bodenartenspezifischen gesättigten Wasserleitfähigkeit nach den Trockenrohdichteklassen T1 (> 0,8 bis <= 1,4 g/cm³), T3 (> 1,4 bis <= 1,6 g/cm³) und T5 (> 1,6 bis <= 2,0 g/cm³) sowie nach den Humusgehaltsklassen h1 (h0 und h1), h2 sowie ohne Berücksichtigung des Humusgehaltes "h_"

Bda		T1_h1	T3_h1	T5_h1	T1_h2	T3_h2	T5_h2	T1_h_	T3_h_	T5_h_
Ss	anz	27	64	45	9	14	2	86	281	199
Ss	geo	832,8	448,5	244,6	670,8	287,7	9,7	470,7	408,7	236,0
Sl2	anz	12	43	28	6	15	15	54	126	105
Sl2	geo	303,1	95,1	62,4	751,8	200,4	53,7	190,5	66,3	30,0
Sl3	anz	7	44	57	16	45	43	73	175	251
Sl3	geo	188,0	88,2	37,6	163,8	32,2	31,2	77,8	28,9	21,4
Su2	anz	12	27	24	10	14	3	51	109	89
Su2	geo	674,5	259,4	74,5	730,0	192,6	18,9	176,9	154,3	44,0
Su3	anz	13	22	13	8	13	20	40	67	86
Su3	geo	110,4	36,9	58,8	323,9	110,1	58,6	31,4	44,4	23,4
Su4	anz	2	9	6		4	2	8	24	24
Su4	geo	868,6	177,5	17,8		52,4	26,4	32,6	63,6	15,5
Ls2	anz	6	7	26	12	15	6	42	68	78
Ls2	geo	46,1	100,1	11,8	51,8	24,9	185,5	53,3	19,2	3,9
Ls3	anz	2	15	28	6	14	11	40	57	160
Ls3	geo	8,3	25,6	10,2	535,4	74,4	86,9	114,2	27,1	7,0
Ls4	anz	3	10	77		11	10	20	55	284
Ls4	geo	22,2	273,0	8,4		155,7	5,3	51,1	70,4	6,3
Lt2	anz	9	19	24	10	26	9	81	138	123
Lt2	geo	63,9	84,7	14,1	384,4	88,5	85,8	25,9	21,2	3,7
Lt3	anz	3	17	18	10	35	4	75	143	39
Lt3	geo	6,2	16,6	9,6	19,0	32,6	8,6	8,9	9,9	3,9
Lts	anz	2	12	24	2	10	7	18	57	101
Lts	geo	6,3	49,8	23,6	1,0	22,9	14,8	8,0	10,0	5,3
Lu	anz	25	79	52	44	66	13	186	316	171
Lu	geo	72,7	29,6	14,0	70,8	52,8	26,0	61,2	14,8	2,0
Uls	anz	8	35	15	13	23	6	77	142	88
Uls	geo	19,1	31,1	15,4	108,7	33,6	28,3	18,1	10,5	2,4
Ut3	anz	32	77	47	17	38	4	178	417	174
Ut3	geo	43,7	20,3	7,7	47,0	20,7	12,5	25,1	9,0	3,0
Ut4	anz	38	128	48	47	54	3	219	555	177
Ut4	geo	109,8	35,7	10,3	86,0	26,5	21,6	22,5	7,6	3,2
Tu2	anz	17	61	12	56	26		253	178	26
Tu2	geo	4,9	3,9	2,7	5,2	3,7		4,6	2,0	0,5
Tu3	anz	24	67	26	68	47	3	222	226	61
Tu3	geo	48,6	35,0	4,0	13,2	29,3	6,0	8,2	7,2	0,4

Tabelle 19.5 Geometrische Mittelwerte der bodenartenspezifischen gesättigten Wasserleitfähigkeit nach den Klassen der effektiven Lagerungsdichte L1 (> 1,0 bis <= 1,6 g/cm³), L3 (> 1,6 bis <= 1,8 g/cm³) und L5 (> 1,8 bis <= 2,2 g/cm³) sowie nach den Humusgehaltsklassen h1 (h0 und h1), h2 sowie ohne Berücksichtigung des Humusgehaltes "h_"

KA5	kf	L1_h1	L3_h1	L5_h1	L1_h2	L3_h2	L5_h2	L1_h_	L3_h_	L5_h_
Ss	anz	87	48		21	4		340	220	6
Ss	geo	565,8	239,8		414,1	52,5		444,7	235,0	204,1
Sl2	anz	38	40	5	13	22		133	123	29
Sl2	geo	133,2	87,8	21,1	513,6	67,8		111,1	35,0	37,6
Sl3	anz	27	56	26	39	45	20	150	238	113
Sl3	geo	142,6	61,0	21,9	70,1	32,9	23,2	69,6	23,1	14,2
Su2	anz	33	29		23	4		144	96	9
Su2	geo	378,1	105,5		335,7	38,6		161,0	64,4	7,8
Su3	anz	27	19	2	16	24		82	100	11
Su3	geo	81,3	35,0	36,9	216,3	63,2		44,9	27,2	6,8
Su4	anz	10	5	2		5		25	25	6
Su4	geo	279,8	43,4	3,0		44,5		54,0	26,7	6,7
Ls2	anz	5	10	24	12	17	4	42	76	70
Ls2	geo	43,3	66,3	11,5	51,8	34,2	130,2	55,9	16,4	3,7
Ls3	anz	3	15	28	7	14	10	43	64	151
Ls3	geo	41,3	25,6	10,2	537,7	69,2	80,1	109,9	26,0	6,6
Ls4	anz	4	12	74		10	11	23	56	281
Ls4	geo	50,0	95,3	8,5		141,8	7,9	67,0	53,2	6,4
Lt2	anz	8	8	36		20	24	53	102	190
Lt2	geo	51,0	129,8	24,3		141,7	96,1	34,5	23,2	6,2
Lt3	anz		2	35		14	34	32	73	166
Lt3	geo		11,3	12,5		53,5	20,2	14,7	12,2	6,7
Lts	anz	2	4	32		6	12	15	28	135
Lts	geo	6,3	43,6	28,9		6,2	24,3	25,5	5,5	6,4
Lu	anz	24	73	59	33	72	18	159	324	192
Lu	geo	64,0	44,9	9,7	100,0	46,2	34,1	81,3	18,9	1,6
Uls	anz	19	31	8	22	19		119	152	37
Uls	geo	34,4	23,9	11,2	67,8	26,2		18,7	5,9	1,2
Ut3	anz	49	88	19	32	26		309	399	62
Ut3	geo	55,4	11,4	7,2	32,5	19,3		18,7	6,1	2,6
Ut4	anz	40	132	42	50	51	3	242	568	142
Ut4	geo	107,7	34,3	9,5	87,4	24,3	21,6	19,2	7,6	2,8
Tu2	anz		6	83	3	39	41	55	131	285
Tu2	geo		3,3	3,9	19,1	5,1	3,7	4,7	4,4	2,3
Tu3	anz	7	47	63	20	80	18	90	254	173
Tu3	geo	37,3	38,2	15,1	79,0	12,7	15,0	30,9	6,0	2,2

Der Vergleich der drei Abstufungen nach dem Humusgehalt, "h1", "h2" und "h_", zeigt für die überwiegende Anzahl der Bodenarten je Stufe der Trockenrohdichte den niedrigsten Mittelwert der gesättigten Wasserleitfähigkeit für die "h_"-Varianten und den höchsten Wert für die "h1"-Varianten. Dies wird darauf zurückgeführt, dass die "h1"-Varianten vermutlich zum größten Teil (tiefer liegende) Boder C-Horizonte mit niedrigerer Tortuosität repräsentieren, während die "h2"- und "h_"-Varianten einen hohen Anteil an A- und humosen B-Horizonten repräsentieren, deren Tortuosität höher ist. Angesichts der niedrigen Anzahlen in den "h1"- und "h2"-Varianten könnte Kennwerttabelle eigentlich nur auf Basis der "h_"-Varianten erstellt werden; daraus ergäbe sich, dass die derart abgeleiteten Kennwerte grundsätzlich niedrig und damit eher für den Oberboden typisch wären.

Die Unterschiede der Wasserleitfähigkeit zwischen Bodenarten, die im Körnungsdiagramm unmittelbar benachbart sind, sind jedoch so groß, dass für die Ableitung der Wasserleitfähigkeit nicht alle verfügbaren Datensätze zusammengenutzt, sondern für die großen Datenquellen separate Auswertungen durchgeführt und diese, nie für alle Bodenarten abdeckenden Ergebnisse wurden quasi als Patchwork innerhalb des Körnungsdiagramms zusammengeführt.